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In a recent paper (“The procedural learning deficit hypothesis of lan‐
guage learning disorders: We see some problems”, Developmental 
Science, 2018), West, Vadillo, Shanks, and Hulme (2018) aimed to 
test the procedural deficit hypothesis (PDH) of specific language im‐
pairment (SLI) and dyslexia. This hypothesis proposes that abnormal‐
ities of brain structures underlying procedural memory can largely 
explain SLI, and perhaps developmental dyslexia (Ullman, 2004; 
Ullman & Pierpont, 2005; see also Nicolson & Fawcett, 2007, 2011).

West et al. examined aspects of declarative and procedural 
memory in a representative sample of 7‐ to 8‐year‐old chil‐
dren, in relation to language, literacy, and mathematical abili‐
ties. They emphasized two findings. First, their declarative but 
not procedural learning measures correlated with language, 
reading, and math scores. Second, their procedural learning 
measures demonstrated relatively low reliability. West et al. 
concluded that their results “seriously question the suggestion 
that the construct of a ‘procedural learning system’ can be re‐
liably measured and cast strong doubts on claims from earlier 
studies that deficits in such a system are related to language 
learning difficulties” (pg.10).

Their study raises important questions about the nature of pro‐
cedural learning, how best to measure it, and whether it is related to 
typical and atypical language and cognition. However, we suggest 
that there are a number of weaknesses with the study that invalidate 
their argument.

FINDING #1:  THEIR ME A SURES OF 
PROCEDUR AL LE ARNING DID NOT 
CORREL ATE WITH L ANGUAGE (OR 
RE ADING OR MATH) ME A SURES

West et al. is framed as an investigation of the PDH of SLI and dys‐
lexia. However, they examined a representative sample of children, 
who are likely to be mostly typically developing (TD). Thus, although 
their results could potentially inform procedural learning in typical 
development, the findings do not provide a test of the PDH.

Moreover, the tasks and analyses they employed throw doubt on 
whether they even assessed the functionality of procedural mem‐
ory. Procedural memory is operationalized by the PDH as the im‐
plicit learning and memory that relies on a network rooted in the 
basal ganglia (Evans & Ullman, 2016; Hamrick, Lum, & Ullman, 2018; 
Ullman, 2004, 2016; Ullman & Pierpont, 2005). Crucially, on this 
view procedural memory is not isomorphic with implicit learning and 
memory. Rather, it is one among several types of learning and mem‐
ory that appear to be largely implicit (Ashby, Turner, & Horvitz, 2010; 
Doyon et al., 2009; Reber, 2013; Squire & Dede, 2015).

Unfortunately, the implicit/explicit and procedural/declarative 
distinctions are commonly confounded, including by West et al. As a 
result, most of their (verbal and non‐verbal) implicit learning tasks do 
not clearly probe procedural memory. The Hebb serial‐order learn‐
ing task is an established paradigm for examining repetition learning 
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(Hebb, 1961; Page & Norris, 2009), but to our knowledge has not 
been clearly linked to procedural memory, that is, to basal‐ganglia–
based learning. Worse, the contextual cueing task has been tied to 
the medial temporal lobe, and thus to declarative memory (Chun & 
Phelps, 1999; Greene, Gross, Elsinger, & Rao, 2007), which is op‐
erationalized as medial‐temporal‐lobe–based learning, independent 
of the implicit/explicit distinction (Ullman, 2004, 2016; Ullman & 
Pierpont, 2005).

The implicit learning of non‐verbal perceptual‐motor se‐
quences (although not verbal sequences) in SRT tasks has, by 
contrast, been clearly linked to procedural memory (Clark, Lum, 
& Ullman, 2014; Hardwick, Rottschy, Miall, & Eickhoff, 2013). 
However, whereas most SRT studies test for sequence learning 
by comparing performance between final sequence and random 
blocks after training on the sequence, West et al. appear to have 
computed learning as the difference in performance between 
higher and lower probability sequences throughout the task. Their 
measure of sequence learning thus includes early stages when 
measurable learning might not yet be robust, as learning in this 
system is gradual. Moreover, early sequence learning may de‐
pend partially on declarative memory (Schendan, Searl, Melrose, 
& Stern, 2003). Thus, their learning measure decreases the like‐
lihood that sequence learning in procedural memory was reliably 
measured, reducing the probability that their correlations cap‐
tured shared variance between procedural learning and language, 
reading, or math.

FINDING #2:  POOR RELIABILIT Y OF THEIR 
ME A SURES OF PROCEDUR AL LE ARNING

Although we laud West et al. for examining task reliabilities, their 
conclusion that poor reliabilities for their (purported) measures of 
procedural learning “…cast strong doubt…” on results from earlier 
research on procedural memory in SLI and dyslexia is not warranted. 
Low reliability attenuates effect sizes (Baugh, 2002), leading to an 
underestimation of the true effect size and potentially non‐sig‐
nificant findings. Thus, a study might observe low effect sizes and 

non‐significant results not because the true effect size is zero, but 
because the tasks used to measure the outcome variable had poor 
reliability, leading to a false‐negative error.

However, meta‐analyses have clearly shown that individuals 
with SLI or dyslexia perform significantly worse than TD controls 
on the SRT task (Clark & Lum, 2017; Lum, Conti‐Ramsden, Morgan, 
& Ullman, 2014; Lum, Ullman, & Conti‐Ramsden, 2013). Thus, the 
concern is not whether a false‐negative error has been made. Rather, 
with low SRT reliability, the observed group differences would likely 
be underestimations of the true effect sizes. This can be illustrated by 
adjusting effect size for reliability (Muchinsky, 1996). Indeed, we see 
in Figure 1 that correcting for low reliability leads to a larger effect 
size in the difference between TD and SLI/dyslexia, further support‐
ing rather than weakening the PDH.

CONCLUSION

The study by West et al. raises important issues about how best 
to measure procedural learning and assess its relationship with 
language, reading, and math development. Because West et al. 
did not examine language dysfunction and did not clearly probe 
procedural memory, their findings do not clearly inform the PDH. 
Additionally, even if their implicit learning measures are taken to 
reflect learning in procedural memory, low task reliabilities lead to 
an underestimation of effect sizes, serving to strengthen rather 
than weaken the evidence that children with SLI or dyslexia are 
impaired at procedural learning. In sum, rather than calling into 
question the PDH, we believe their findings serve to illustrate the 
complexities involved in properly assessing the role of procedural 
and implicit learning in typical and atypical language, reading, and 
math development.
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F I G U R E  1   Forest plot showing unadjusted effect sizes (diamonds filled in black) and reliability‐corrected effect sizes (unfilled diamonds). 
The figure shows that the impact of correcting for reliability, following Muchinsky's (1996) reliability correction for correlation coefficients, 
increases the magnitude of the effect size, for two recent relevant meta‐analyses. The meta‐analysis by Clark and Lum (2017) provides 
the most recent summary of studies comparing SRT learning between individuals with SLI and TD controls. The metaanalysis by Lum et al. 
(2013) compared SRT learning differences between individuals with dyslexia and TD controls. For illustrative purposes, the reliability of the 
SRT task was set to 0.21, which was the lowest reliability found by West et al. for the non‐verbal SRT task. The reliability of the tests used 
to identify children with SLI and dyslexia was set to 0.90. This value roughly corresponds to the internal consistency of the overall composite 
score used to identify language and reading impairments in most standardized tests of language and reading (e.g., Semel et al., 2004)
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