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A B S T R A C T

Despite a growing body of research devoted to the study of how humans encode environmental patterns, there is
still no clear consensus about the nature of the neurocognitive mechanisms underpinning statistical learning nor
what factors constrain or promote its emergence across individuals, species, and learning situations. Based on a
review of research examining the roles of input modality and domain, input structure and complexity, attention,
neuroanatomical bases, ontogeny, and phylogeny, ten core principles are proposed. Specifically, there exist two
sets of neurocognitive mechanisms underlying statistical learning. First, a “suite” of associative-based, auto-
matic, modality-specific learning mechanisms are mediated by the general principle of cortical plasticity, which
results in improved processing and perceptual facilitation of encountered stimuli. Second, an attention-depen-
dent system, mediated by the prefrontal cortex and related attentional and working memory networks, can
modulate or gate learning and is necessary in order to learn nonadjacent dependencies and to integrate global
patterns across time. This theoretical framework helps clarify conflicting research findings and provides the basis
for future empirical and theoretical endeavors.

1. Introduction

Many events in our daily existence occur not completely randomly
or haphazardly, but with a certain amount of structure, regularity, and
predictability. Because of the ubiquitous presence of structured patterns
in human action, perception, and cognition, the ability to process and
represent these patterns is of paramount importance. This type of
structured pattern learning – which is likely a crucial foundational
ability of all higher-level organisms, and possibly of many lower-level
ones as well – has been studied under the guise of different terms for
what arguably tap into aspects of the same underlying construct, in-
cluding “implicit learning” (A.S. Reber, 1967), “sequence learning”
(Nissen and Bullemer, 1987), “sequential learning” (Conway and
Christiansen, 2001), and “statistical learning” (Saffran et al., 1996).

Despite gains made in understanding how humans and other or-
ganisms learn patterned input, we are still far from an understanding of
the neurocognitive mechanisms underlying learning and what factors
constrain its emergence across individuals, species, and learning si-
tuations. What is needed is an integration of research findings across six
key areas that have generally been treated in isolation:

1) Input modality and domain: How does learning proceed for inputs

across different perceptual modalities (e.g., vision vs. audition) or
domains (e.g., language vs. music)? Does the learning of patterns in
one modality or domain involve the same neurocognitive mechan-
isms as learning in a different modality or domain?

2) Input structure and complexity: What mechanisms underpin the
learning of different types of input patterns, such as associations
between adjacent or co-occurring elements to more complex
“global” patterns that require integration of information over longer
time-scales?

3) Role of attention. To what extent are attention and related cognitive
processes necessary for statistical learning to occur? In turn, does
the outcome of learning modulate attention?

4) Neural bases. What is the underlying neuroanatomy of statistical
learning? Is there a single, common learning and processing net-
work? Or are there different sets of regions or networks that are used
for different types of learning situations?

5) Ontogenetic constraints. How does statistical learning emerge and
change across the lifespan? Do different aspects of learning have
different developmental trajectories?

6) Phylogenetic constraints. Which aspects of statistical learning are
shared versus unique across different animal species? What drives
variation or differences across species?
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Although a number of theoretical perspectives exist (e.g., Arciuli,
2017; Aslin and Newport, 2012; Daltrozzo and Conway, 2014;
Forkstam and Petersson, 2005; Frost et al., 2015; Janacsek and Nemeth,
2012; Keele et al., 2003; Perruchet and Pacton, 2006; Pothos, 2007; P.J.
Reber, 2013; A.S. Reber, 2003; Savalia et al., 2016; Seger, 1994;
Thiessen and Erickson, 2013), currently none of them sufficiently ad-
dress all of these questions. In this paper, we begin by defining in more
detail what is meant by “statistical learning” and how it relates to other
similarly-used terms. A lack of clarity and consensus in regards to ter-
minology has proven to be a barrier for integrating findings across
different research areas; furthermore, the use of certain terms denotes
premature assumptions about what the underlying mechanisms are that
characterize the construct of interest. Following this discussion, we
provide a selective review and synthesis of research related to the six
areas described above. Then, based on this review, we outline ten core
principles that arise from an integration of the reviewed research and
provide the beginnings of what could be construed as a unified theory
of statistical learning. To preview, we propose there exist two primary
sets of neurocognitive mechanisms – one based on the general principle
of cortical plasticity and the other a specialized neural system that can
provide top-down modulation of learning – with each affected and
constrained by different factors in different ways. Only by taking into
account the operation of these two mechanisms will we understand the
neurocognitive bases of statistical learning and how they are con-
strained by factors such as input modality, complexity, ontogeny, and
phylogeny.

2. Preliminary considerations

Statistical learning research began in earnest with the seminal study
by Saffran et al. (1996), who showed that 8-month-old infants were
sensitive to the statistical structure inherent in a short (2-minute) au-
ditory nonword speech stream. In this study, statistical structure was
operationalized as the strength of transitional probabilities between
adjacent syllables (i.e., the likelihood of a given syllable occurring next
based on the current syllable).

Subsequent research examined the generality of this phenomenon,
demonstrating learning not only in human infants (Kirkham et al.,
2002), but also adults, and not only with speech-like input, but also for
non-linguistic sound sequences (Saffran et al., 1999) and visual scenes
(Fiser and Aslin, 2001). Thus, statistical learning was quickly re-
cognized as a general-purpose mechanism, robust across tasks, situa-
tions, and perhaps even species (Conway and Christiansen, 2001). It
should be noted that the term “statistical learning” is limited in that it
would seem to imply that learning and processing of input patterns
consists of making statistical computations. Although the input in
learning tasks can often be described in terms of statistical regularities
(e.g., transitional probabilities between stimuli), it is as yet an open
question whether in fact the brain learns and represents statistical
regularities per se or whether what is learned is something different
such as memory for frequently occurring clusters of items or “chunks”
(Orban et al., 2008; Perruchet and Pacton, 2006; Slone and Johnson,
2018). This point will be returned to in section 3.2.

For decades prior to these initial studies, another area of research
had been focused on a similar phenomenon, known as “implicit
learning” (A.S. Reber, 1967, 1989). Implicit learning is generally de-
fined as “learning without awareness” (Cleeremans et al., 1998) but it
has been argued that statistical learning and implicit learning both refer
to the same general learning phenomenon (Batterink et al., 2019;
Christiansen, 2018; Perruchet and Pacton, 2006). Indeed, both types of
learning reflect a type of incidental pattern learning (i.e., learning oc-
curring without intention or instruction). For this reason, we regard the
similarities among statistical learning and implicit learning research as
indicative that there may be core processes that contribute to both, and
as such, we look for insights that may be gained by considering research
findings from both areas (and other areas of research as well).

Of course, even the early research on implicit learning did not occur
in a vacuum. Behaviorist approaches to associative learning and con-
ditioning provided an important historical context for the implicit
learning work (e.g., see Pearce and Bouton, 2001; Rescorla and Wagner,
1972). Gureckis and Love (2007) in fact argued that much of what the
field has been studying under the guise of statistical learning is embo-
died by behaviorist principles of conditioning and associative learning
(c.f., Goddard, 2018). Additional neurophysiological antecedents of
statistical learning include Hebb’s principles of learning and plasticity
(i.e., the “Hebbian learning rule”; see Cooper, 2005; Hebb, 1949) and
the demonstration that the development of primary visual cortex de-
pends on environmental experience (e.g., Blakemore and Cooper,
1970). While acknowledging these important precursors, this review
focuses primarily on the findings from the implicit learning and sta-
tistical learning literatures per se.

For simplicity the term “statistical learning” is used in the re-
mainder of this paper to refer to incidental learning of structured pat-
terns encountered in the environment. To constrain and operationalize
the definition of statistical learning and provide added focus to this
review, we delineate the task or situational characteristics of interest.
Specifically, we propose three orthogonal dimensions that can help
clarify the construct of statistical learning. These dimensions include:
the level of structure present in input (i.e., random versus heavily
structured sequences); the amount of exposure that is involved (i.e., a
single exposure versus multiple instances); and the extent to which task
situations provide explicit instruction or overt feedback (i.e., incidental
versus intentional learning situations). These three dimensions are de-
picted graphically in Fig. 1. They create a “task space” containing a
continuum of distributed points in which tasks (or situations) that are
closer to the zero-point (0,0,0) can be thought of as being more char-
acteristic of statistical learning compared to tasks at the periphery (note
though, that technically speaking there is no actual zero-point as there
could always be a situation with more exposures, or more structure, etc.
and in that case the zero-point might be more appropriately regarded as
a mathematical asymptote or singularity). Thus, the situations that we
consider to be “canonical” for statistical learning have the following
characteristics: structured input patterns presented over multiple ex-
posures under incidental conditions in which there is no instruction to
learn or attend to the patterns per se. Note, from this perspective, the
phenomenon of statistical learning is not a categorical distinction, but a
graded, continual one in which certain tasks or situations might elicit
such learning more so than others.

Likewise, we can consider the types of tasks that have been used to
investigate statistical learning and related learning phenomena. The
primary tasks include the artificial grammar learning (AGL) task (A.S.
Reber, 1967), the serial reaction time (SRT) task (Nissen and Bullemer,
1987), and the word segmentation task and its variants (Fiser and Aslin,
2001; Saffran et al., 1996). Table 1 differentiates these three tasks in
terms of the measure of learning, the input structure and perceptual
modality of the stimuli, and whether or not the task requires general-
ization to new, previously unencountered items. Despite some differ-
ences, what is common across tasks is that participants receive repeated
exposure to structured patterns, usually under incidental learning
conditions and without overt feedback. The general finding is that
under such conditions, participants show facilitation of or sensitivity to
the underlying structure, and this often – though not always – is ac-
companied by an inability to verbalize one’s knowledge of what has
been learned.

3. Six key questions

3.1. How is learning affected by input modality and domain?

For some time now, it has been known that statistical learning is not
tied to a single perceptual modality or cognitive domain. Indeed, even a
cursory review of findings from the three canonical tasks (Table 1),
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shows that learning can occur with auditory language-like material
(Saffran et al., 1996), strings of letters (A.S. Reber, 1967), non-language
auditory input such as pure tones (Saffran et al., 1999) or sequences of
musical timbre (Tillman and McAdams, 2004), visual scenes and shapes
(Fiser and Aslin, 2001), visual-motor patterns (Nissen and Bullemer,
1987), and tactile input (Conway and Christiansen, 2005). The de-
monstration of learning across such a widespread set of domains and
input types immediately prompted suggestions that statistical learning
should be thought of as a unitary, domain-general learning phenom-
enon that applies across a wide range of situations (Kirkham et al.,
2002). That is, it is logically possible that statistical learning is gov-
erned by a single mechanism or neurocognitive principle that applies
across a wide range of input types.

On the other hand, a series of studies showed that although learning
of structured patterns can occur across various perceptual domains, the
way that learning occurred in different modalities differed, suggesting
the involvement of multiple modality-specific learning mechanisms
(Conway and Christiansen, 2005; 2006; 2009; Emberson et al., 2011).
For instance, adult participants showed higher levels of learning for
auditory serial patterns compared to visual serial patterns – despite the
patterns across perceptual modalities being equated in terms of low-
level perceptual factors (Conway and Christiansen, 2005). In addition,
the rate of presentation of serial input patterns had opposite effects on
auditory and visual learning, with auditory and visual learning excel-
ling at fast and slow presentation rates, respectively (Emberson et al.,
2011). Moreover, different patterns presented in multiple streams of
stimuli could be learned simultaneously and independently of each
other, as long as the input streams were instantiated in different per-
ceptual modalities (visual versus auditory) or perceptual categories
(shapes versus colors; tones versus nonwords) (Conway and
Christiansen, 2006). Given such findings, Conway (2005) and Conway
and Christiansen (2005; 2006) proposed that aspects of statistical

learning might share similarities with perceptual priming or perceptual
learning (Conway et al., 2007), in which networks of neurons in
modality-specific brain regions show decreased activity and improved
facilitation for items that are similar to those previously experienced
(P.J. Reber et al., 1998; Schacter and Badgaiyan, 2001). Furthermore,
Conway (2005) suggested that although learning is implemented by a
set of common computational principles or algorithms that exist across
perceptual domains, there are processing differences within each per-
ceptual modality that affect learning, such as audition and vision being
differentially adept at picking up information distributed in time and
space, respectively. Note, too, that from this perspective, it is not only
the sensory modality that is important (e.g., auditory), but also the type
of domain or category (e.g., verbal material vs. nonlinguistic tones;
Conway and Christiansen, 2006).

However, under a purely domain-specific viewpoint, learning in one
perceptual modality or domain would have no bearing or relation to
learning and processing in another perceptual modality or domain. This
does not appear to be the case. For instance, a number of studies have
demonstrated that input presented in one perceptual modality can af-
fect pattern learning in a second concurrently presented modality
(Cunillera et al., 2010; Mitchel and Weiss, 2011; Mitchel et al., 2014;
Seitz et al., 2007; Thiessen, 2010). This implies an ability for learners to
integrate information across different modalities or domains, a chal-
lenge for modality-specific processing accounts. However, it is im-
portant to note that for all of these demonstrations of cross-modal
learning effects, the stimuli in the two different perceptual domains
were presented simultaneously in time. A recent study showed that
when cross-modal dependencies are created between sequentially-pre-
sented input (e.g., a visual stimulus that is followed by an auditory
stimulus with a certain statistical regularity), cross-modal learning does
not occur (Walk and Conway, 2016); only sequential dependencies
within the same perceptual modality were shown to be learnable by

Fig. 1. Three orthogonal dimensions outlining a proposed task space for statistical learning.

Table 1
Summary of three common paradigms for studying statistical learning.

AGL SRT Segmentation

Measure of learning Explicit judgment of grammaticality (usually) Reaction times (though response accuracy can also be
used)

Explicit judgement of familiarity (usually)

Input structure Defined by artificial grammar Repeating sequences (usually) Defined by transitional probabilities
Modality Perceptual (any) Visual-motor (mostly, though auditory stimuli can also be

used)
Perceptual (any)

Generalization at test? Yes No No
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adult participants. One possibility therefore is that the learning of such
sequential cross-modal patterns might require additional cognitive re-
sources such as attention or working memory in order to focus on the
dependencies in question and link them together across time.

It is also important to note that the motor modality can contribute to
learning. For instance, a number of studies have investigated the role of
perceptual versus motor learning using the SRT task (e.g., Nemeth
et al., 2009; Song et al., 2008). The general finding is that motor
learning can make independent contributions to learning over and
above that which occurs perceptually (Goschke, 1998). In addition,
motor-response learning, but not visual perceptual learning, is un-
affected by sensory manipulations of the stimuli (e.g., changes to sti-
mulus colors; Song et al., 2008). Furthermore, motor learning and
perceptual sequence learning appear to follow different time-courses of
consolidation (Hallgató et al., 2013), further suggesting that the motor
and perceptual modalities should be thought of as independent learning
systems.

In sum, that input modality can affect statistical learning is no
longer questioned (e.g., Frost et al., 2015). However, exactly how these
at least partially separable and independent modality-specific learning
mechanisms (e.g., visual, auditory, tactile, motor, etc.) operate in a
multimodal environment is still not completely understood. It is likely
that there may be a combination of modality-specific and domain-
general learning processes that work together (e.g., Conway, 2005;
Batterink et al., 2019; Keele et al., 2003). Fig. 2 illustrates three can-
didate architectures corresponding to domain-general, modality/do-
main-specific, and combined general/specific accounts. As an example
of how a combined domain-general and domain-specific account might
be instantiated in the brain, Conway and Pisoni (2008) reviewed evi-
dence that statistical learning is associated with both modality-specific
perceptual/motor brain regions – such as visual processing occipital
regions for learning visual input patterns, auditory processing brain
regions for learning auditory input, and motor and premotor cortex for
motor learning – as well as areas such as the prefrontal cortex (PFC)
which is involved in processing input across a variety of perceptual
modalities and domains. Likewise, Tecumseh and Martins (2014) pro-
posed that for the processing of sequential patterns, the PFC and spe-
cifically Broca’s area mediates domain-general predictive processing
mechanisms that interact with posterior brain networks that mediate

modality-specific input processing. Finally, Frost et al. (2015) proposed
a similar interaction between domain-specific and domain-general
processing, though their emphasis was on the hippocampus, basal
ganglia, and thalamus as contributing to multimodal and domain-gen-
eral processing, rather than the PFC.

More work is needed to specify to what extent different processing
modes or mechanisms reflect a combination of modality-specific and
domain-general learning under different situations. It is likely that
certain cognitive processing resources such as selective attention and
cognitive control may modulate or gate learning (e.g., Turk-Browne
et al., 2005), and may be necessary for learning multimodal patterns
across a temporal sequence. The role of attention as well as the neural
bases of statistical pattern learning will be addressed further in sub-
sequent sections (i.e., 3.3 and 3.4); but first, we turn to the question of
input structure and complexity.

3.2. How is learning affected by the type of input structure?

Related to though independent of the question of input modality, is
the question of input structure and complexity: what types of regula-
rities and patterns can be learned, and what learning mechanisms are
used to learn different types of structures? This question was central to
much of early implicit learning research. Cleeremans et al. (1998)
summarized the varying approaches emphasizing different aspects of
learning, including distributional or statistical approaches (based on
associative learning mechanisms as embodied for instance by neural
network models; Cleeremans and McClelland, 1991), exemplar-based
approaches (in which newly encountered exemplars are compared to
the similarity of previously-memorized whole items; Vokey and Brooks,
1992), fragment-based or chunking approaches (in which newly en-
countered exemplars are evaluated to the extent to which they contain
previously-encountered short chunks that were observed in previous
exemplars; Perruchet and Pacteau, 1990), and abstractionist ap-
proaches (in which the structure of the relationships among stimuli is
represented, independent of the stimuli surface features, perhaps taking
the form of IF-THEN statements or algebraic rules; Marcus et al., 1999;
A.S. Reber, 1989). Artificial grammar learning research using “balanced
chunk strength designs”, in which chunk/fragment information was
independently varied with the rules of the artificial grammar, showed

Fig. 2. Three candidate architectures for how
input modality and domain interacts with
statistical learning. (Top left): A domain-gen-
eral (DG) account posits a single, unitary me-
chanism that implements statistical learning
for all input modalities and domains. Here, the
frontal lobe of the brain (prefrontal cortex) is
offered as one potential domain-general brain
region, though others areas are also likely
candidates. (Top right): A modality/domain-
specific account posits multiple, relatively in-
dependent mechanisms, each handling a spe-
cific type of input such as auditory (A), visual
(V), tactile (T), and motor (M) patterns. For
simplicity, only these four modality/domain-
specific regions are illustrated though others
would be posited to exist as well. (Bottom):
Finally, perhaps the most viable account is one
which combines domain-general and domain-
specific architectures, here shown with con-
nections between modality-specific brain re-
gions and the prefrontal cortex.
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that the learning of fragment or chunk information can be at least partly
dissociated from the learning of grammatical rules (Knowlton and
Squire, 1996). That is, the two types of patterns can be learned in-
dependently of each other and are subserved by apparently distinct
neural and cognitive mechanisms (Lieberman et al., 2004).

What exactly constitutes a grammatical “rule” has led to a certain
amount of debate (Altmann and Dienes, 1999; Marcus et al., 1999). One
possibility is that what is regarded as a rule is actually a type of “per-
ceptual primitive” (Endress et al., 2009). Perceptual primitives include
repetition-based structures (e.g., “ga-ti-ti” and “li-na-na” follow the
same ABB repetition pattern), which are highly salient to learners, as
well as edge-based positional regularities, where items occurring at the
beginning and ending of sequences tend to be learned more effectively
than items in the middle. These perceptual primitives are so-named
because they appear to be a type of regularity that is detected and
learned on the basis of low-level perceptual mechanisms, common
across both ontogeny and phylogeny (though this does not rule out the
possibility that other non-perceptual memory systems might also con-
tribute to their learning). From a slightly different perspective, fol-
lowing from the research on balanced chunk-strength designs
(Knowlton and Squire, 1996), what is referred to as rule-based in-
formation might include positional constraints (such as which stimuli
are allowable in initial, middle, or ending positions of a sequence),
which is not fully captured by analysis of local chunk information
alone. Thus, the umbrella term “rule” likely refers to more than one
type of pattern (e.g., perceptual primitives and positional information
being two likely candidates).

Apart from rule-based information, one important question raised
by Perruchet and Pacton (2006; c.f., Christiansen, 2018) is whether
chunk-based learning and statistical learning are the same or in-
dependent processes. Research on implicit learning has generally
stressed chunk-based approaches whereas research on statistical
learning has stressed statistical computations. Chunking models such as
PARSER assume that attention to frequently co-occurring units results
in an improved memory trace for those items, resulting in the formation
of a chunk (Perruchet and Vinter, 1998). In a chunk-based view,
chunking mechanisms are the primary way that learning proceeds;
sensitivity to statistical relations are not learned per se but rather are a
byproduct of the chunking process. On the other hand, it is possible that
“chunks” are formed through the detection of transitional probabilities;
in such a view, a chunk is the outgrowth of statistical learning pro-
cesses, being the learned association between two items connected by
high transitional probabilities. Several studies have attempted to clarify
which mechanism governs pattern learning, with most of the evidence
to date favoring chunk-based mechanisms (Giroux and Rey, 2009; Fiser
and Aslin, 2005; Perruchet and Poulin-Charronnat, 2012; Orban et al.,
2008), though at least one study appears to support a statistical
learning approach (Endress and Mehler, 2009). It is possible that both
chunk-based and statistical-based computations are available to lear-
ners and which process is used depends on the learning conditions, such
as the availability of temporal cues which might promote chunking
(Franco and Destrebecqz, 2012). It is also possible that forming a chunk
among items separated in time (i.e. as part of a temporal sequence) has
different cognitive requirements compared to a chunk of spatially-ar-
ranged and simultaneously-presented stimuli.

In addition to the distinctions among chunks, statistical associa-
tions, and rules, pattern structure can be quantified in other ways. For
instance, patterns can differ in relation to how many preceding items
are needed to predict the subsequent item in a sequence: for a 1st order
dependency, only one preceding item is needed to determine the next
item, whereas for a 2nd order dependency, two preceding items are
required, etc. (Gomez, 1997). Likewise, in the statistical learning lit-
erature, complexity can be manipulated in terms of the strength of the
transitional probabilities between items, the size of the “words” or
chunks in word segmentation tasks (e.g., pairs of items or triplets), and
the hierarchical arrangement of chunks in visual learning tasks.

Similarly, for the serial reaction time task, complexity can be manipu-
lated in terms of the type of sequence pattern (fixed versus probabil-
istic; first-order conditional versus second-order conditional; Remillard,
2008) and the length of the sequence.

Within the artificial grammar learning literature, there have been
attempts to quantify the level of complexity of input patterns (e.g.,
Pothos, 2010; Schiff and Katan, 2014; van den Bos and Poletiek,
2008v). For instance, Wilson et al. (2013) used a metric that quantifies
the complexity of a finite-state grammar by dividing the number of
different stimulus elements in the grammar by the number of unique
transitions between stimulus elements. This gives a measure of the
grammar’s linear predictability or determinism, where a value of 1.0
denotes a perfectly deterministic grammar (i.e., a linear chain) and a
lower value denotes a certain level of unpredictability (i.e., branching
within the grammar). Wilson et al. (2013) used this metric to examine
grammar learning of varying levels of complexity in humans and non-
humans, a point that will be returned to in section 3.6 (see also,
Heimbauer et al., 2018). Pothos (2010) proposed an entropy model for
quantifying complexity in AGL, borrowing concepts from information
theory. Essentially, Shannon entropy is a logarithmic function of the
number of different possibilities available; the greater the level of en-
tropy the higher the level of uncertainty. Pothos (2010) found that this
measure of entropy correlated with artificial grammar learning per-
formance (greater levels of entropy were associated with lower levels of
learning); entropy was also correlated with most other standard mea-
sures of complexity and regularity, such as associative chunk strength.
Likewise, Schiff and Katan (2014) used a measure of topological en-
tropy to assess 56 previously published AGL studies incorporating a
total of 10 different artificial grammars. They found that their measure
of entropy was significantly correlated with learning performance, de-
spite the fact that the studies were carried out under different condi-
tions and using different types of stimuli. In sum, it is clear that, re-
gardless of the specific measure used, increased pattern complexity is
associated with decreased learning performance on AGL tasks.

For patterns occurring in input sequences, it may also be possible to
differentiate the types of structures in terms of three primary types of
patterns: fixed sequences, where items in the sequence occur in an ar-
bitrary, inflexible order (e.g., a phone number); statistical-based pat-
terns, where the sequence consists of frequently co-occurring elements
such as pairs or triplets defined by transitional probabilities; and hier-
archical-based sequences, in which primitive units are combined to
create more complex units, such as the case in natural language and
other complex domains (Conway and Christiansen, 2001). Supporting
this proposal, recent empirical work using the SRT task suggests that
the learning of fixed sequences and statistical-based patterns reflect
partially different characteristics, both at the behavioral and neural
levels (e.g., Kóbor et al., 2018; Simor et al., 2019). For instance, sta-
tistical learning appears to occur relatively rapidly and plateaus
quickly, whereas sequence learning shows a slower, gradual improve-
ment across learning episodes (Simor et al., 2019). Furthermore, the
two types of learning are reflected by different ERP components (Kóbor
et al., 2018). These are interesting findings because from a certain
perspective, the learning of both a fixed sequence and a statistical-based
one could be construed as involving the learning of transitional prob-
abilities inherent in the sequences, with a fixed sequence having tran-
sitional probabilities of 1.0 and statistical-based sequences containing
transitional probability values less than one. However, the evidence
suggests that at least partially separate mechanisms underly the
learning of these two types of patterns.

One way to distinguish fixed sequences and statistical-based pat-
terns from hierarchical patterns is by considering the difference be-
tween adjacent and nonadjacent dependencies (Gómez, 2002;
Remillard, 2008). Adjacent dependencies consist of regularities be-
tween two items immediately following each other (e.g., A–B) whereas
nonadjacent dependencies consist of regularities between two items in
which the two have one or more intervening elements between them
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(e.g., A-x-B). The distinction between adjacent and nonadjacent de-
pendencies is similar to the distinction made in formal linguistics be-
tween finite-state grammars, that generally include adjacent-item de-
pendencies and are thought to be inadequate to describe natural
language, and phrase structure grammars, which incorporate non-ad-
jacent item dependencies, can have a recursive or hierarchical struc-
ture, and are computationally more powerful and arguably more able to
characterize natural language (Fitch and Friederici, 2012; Tecumseh
and Martins, 2014; Jager and Rogers, 2012).

Because nonadjacent dependency learning is thought to be a hall-
mark of human language and possibly other aspects of cognition
(Christiansen and Chater, 2015), it is not surprising that there has been
much recent interest in this type of learning (e.g., Creel et al., 2004;
Deocampo et al., 2019; Frost and Monaghan, 2016; Gómez, 2002; Lany
and Gómez, 2008; Pacton and Perruchet, 2008; Romberg and Saffran,
2013; Vuong et al., 2016). The learning of nonadjacent dependencies is
often difficult to demonstrate in the lab and appears to generally re-
quire that the nonadjacent structure be highlighted – such as by ma-
nipulation of the transitional probabilities or through perceptual cues –
or for endogenous attention to be properly oriented to the dependencies
in question (de Diego-Balaguer et al., 2016d; Gómez, 2002; Newport
and Aslin, 2004). More specifically, de Diego-Balaguer et al., 2016d
suggested that the learning of nonadjacent dependencies likely is only
possible later in development when endogenous attentional mechan-
isms become available to the learner. Research also suggests that the
learning of nonadjacent dependencies recruits neural networks that are
separate from those involved in the learning of adjacent dependencies
(more on neural bases of nonadjacent dependency learning in section
3.4).

Taken together, it may be possible therefore to think about different
types of input structures that vary in complexity. Table 2 presents a
rough taxonomy of different types of patterns, with purportedly more
“simpler” patterns (i.e., easier to learn) at the top and “more complex”
patterns toward the bottom. Pattern complexity can thus be thought of
as existing along a continuum from more serial, linear, and adjacent-
item associations to dependencies that are more variable, nonadjacent,
and/or contain recursive or hierarchical structure (c.f., Dehaene et al.,
2015; Petkov and Wilson, 2012). Additional research is needed to
specify the cognitive, computational, and neural prerequisites needed
to learn patterns of varying structure and complexity, as there have
been few studies systematically investigating these factors.

3.3. What is the role of attention in learning?

Although statistical learning generally occurs under “incidental”
conditions (i.e., without direct instruction or feedback during the
learning process), this does not necessarily imply that attention plays no
role. Before examining the role of attention in statistical learning, it is
necessary to briefly define and discuss the construct of attention as well
as related concepts such as automaticity, working memory, and con-
scious awareness.

An important distinction can be made between exogenous and en-
dogenous attention (e.g., Chica et al., 2013). Exogenous attention is a
bottom-up process in which cognitive resources are captured by salient
stimuli in the environment; endogenous attention is a top-down process
that provides a way to select which stimuli to process and which to

ignore. Related to attention is the notion of automaticity. A cognitive
process can be considered automatic if it occurs with little effort and
requires few attentional resources (Hasher and Zacks, 1979). More
specifically, it has been suggested that automatic behaviors or cognitive
processes usually have the following four characteristics (Bargh, 1994):
there is a general lack of awareness of the cognitive process that is
occurring; there is no intentional initiation of the cognitive process in
question; the cognitive process is difficult to stop or alter once it has
been initiated; and the cognitive process has a low mental load. Thus, in
regard to the role of attention in statistical learning, one question is
whether statistical learning can be considered an automatic process
(i.e., whether it proceeds without awareness, is initiated without in-
tention, is unable to be controlled once it has started, and whether it has
a low mental load or cost). A separate question is what roles do en-
dogenous and exogenous attention play in learning, if any.

It is important to point out that (endogenous) attention is closely
linked to the construct of working memory (Awh et al., 2006). For in-
stance, one common definition of working memory is that it refers to
processes that “hold a limited amount of information temporarily in a
heightened state of availability for use in ongoing information proces-
sing” (e.g., Cowan, 1988, 2017). Thus, by this definition, working
memory and (endogenous) attention are closely intertwined as the
items that are in a heightened state of availability are necessarily within
the focus of attention.

Finally, related to the question of attention and working memory, is
to what extent statistical learning results in knowledge that is accessible
to conscious awareness. Attention and awareness are related – e.g., the
involvement of attention is more likely to lead to conscious awareness –
but they are not synonymous (Lamme, 2003; Norman et al., 2013).
Awareness can emerge when the activation strength or quality of the
representations reach a sufficient level (Cleeremans, 2011), regardless
of how much attention was originally deployed during the learning
task. The extent to which learning proceeds intentionally versus in-
cidentally can be manipulated by task instructions, which in turn can
influence the extent that the knowledge that is learned is accessible to
conscious awareness (Bertels et al., 2015). Pattern awareness can also
emerge naturally during the learning process, even when no instruc-
tions are given to explicitly promote explicit strategies or conscious
awareness (Singh et al., 2017). Decades of research on implicit learning
has demonstrated that some aspects of learning can occur without the
involvement of explicit strategies or conscious awareness (e.g., Song
et al., 2007; Turk-Browne et al., 2009). To provide focus to the re-
maining discussion, we focus primarily on the roles of attention and
working memory in relation to statistical learning.

Understanding the role of attention and working memory during
statistical learning is not straightforward and in fact is a matter of some
debate (e.g., Janacsek, and Nemeth, 2013; 2015; Martini et al., 2015).
On the one hand, it seems plausible that having a larger working
memory capacity provides a bigger “window” to encode and bind sti-
muli together across a temporal sequence that could subsequently im-
prove learning of the contained regularities (Janacsek, and Nemeth,
2013). However, the empirical findings do not consistently demonstrate
a functional relationship between working memory capacity and se-
quence learning ability as measured by the SRT task (Janacsek, and
Nemeth, 2013). One possible reason for this is that if one takes a multi-
component view of statistical learning (e.g., Arciuli, 2017; Daltrozzo
and Conway, 2014), then each separate component in the system may
depend upon attention or working memory to different degrees. For
instance, the evidence appears to suggest that working memory may be
more closely related to explicit forms of sequence learning compared to
implicit forms of learning, as argued by Janacsek and Nemeth (2013).
Likewise, the construct of working memory is multi-faceted, so different
aspects of working memory may be more or less important for statistical
learning. For instance, visual-spatial working memory may be closely
tied to performance on statistical learning tasks that require visual-
spatial encoding but less so for tasks involving the learning of verbal

Table 2
A rough taxonomy of input structures learnable through statistical learning.

Perceptual primitives (repetitions, etc.)
Serial transitions
Chunks
Finite state grammars (of varying complexity)
Nonadjacent dependencies
Recursive / hierarchical / phrase structure
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patterns (Janacsek, and Nemeth, 2013). In addition, for any given
learning task, different participants may represent and conceptualize
the task differently in terms of how they rely upon verbal, visual, or
other types of representations (Martini et al., 2013). This variability in
how participants represent the learning tasks could therefore explain
the lack of strong correlations observed between working memory ca-
pacity and performance on statistical learning tasks.

Further illustrating the complex relationships among these con-
structs is a study by Hendricks et al. (2013) that attempted to examine
the role of working memory in statistical learning. Hendricks et al.
(2013) used a concurrent loadtask in conjunction with an artificial
grammar learning paradigm to examine whether the learning of
grammatical rules versus chunk-based information was automatic or
not (i.e., required working memory resources). The concurrent load
task involved participants viewing six random numbers on the screen,
maintaining the numbers in memory while they subsequently viewed a
trial of letters generated from an artificial grammar, and then finally
typing the six numbers from memory. This concurrent load task was
given to participants either during the exposure phase of the AGL task,
the test phase, or both. Performance was compared to a control group
that did the AGL task without having to do the concurrent load task.
The results of this study showed that the learning of chunk or fragment-
based information could proceed with minimal cognitive requirements
(that is, the concurrent load task did not impair performance), sug-
gesting that this form is learning can occur relatively automatically and
under incidental learning conditions. On the other hand, the expression
of rule-based knowledge (at test following learning), required a certain
amount of cognitive resources (that is, the concurrent load task given
during the test phase interfered with test performance for rule-based
knowledge). These findings were interpreted by suggesting that the
learning of fragment or chunk information is mediated by a form of
implicit “perceptual fluency” in which perception of items is facilitated
via experience (e.g., Chang and Knowlton, 2004), whereas the learning
and expression of rule-based regularities was an explicit process in-
volving something akin to “hypothesis generation” (e.g., Dulany et al.,
1984).

Note, this conjecture appears to contradict earlier work suggesting
that chunk learning and rule-learning occur via declarative and pro-
cedural memory, respectively (Lieberman et al., 2004). Briefly, de-
clarative memory refers to the recall and recognition of facts and events
(Squire, 2004) whereas procedural memory is a type of nondeclarative
and largely implicit form of learning (Ullman, 2004). The relationship
between statistical learning and these two other forms of memory will
be taken up in section 3.5. For now, it is important to point out that the
findings from Hendricks et al. (2013) and Lieberman et al. (2004) are
not necessarily contradictory of one another, as it is possible that chunk
learning can proceed via multiple routes, using either perceptual-based
or declarative memory-based forms of encoding. Likewise, rule-based
learning similarly may rely on either procedural memory or hypothesis-
generation depending on the particular task, learning context, or in-
dividual. As mentioned earlier, note that “rules” in the present case
refer to any information in the stimulus sequences that denote gram-
maticality apart from bigram and trigram information, such as posi-
tional regularities (e.g., what stimuli are allowed in different positions
of a sequence) or possibly even nonadjacent regularities as dictated by
the grammar.

Interestingly, the concurrent load task also interfered with perfor-
mance in a transfer condition in which the underlying rules were
consistent but the stimulus set was changed (Hendricks et al., 2013).
That is, knowledge of the underlying grammatical regularities could be
transferred to a non-trained letter set but only if there were sufficient
cognitive resources available during test (i.e., only if there was not a
concurrent load task). It appears then that some aspects of statistical
learning require attention / working memory (e.g., using hypothesis-
generation strategies, expressing rule-based knowledge at test, and
transferring knowledge to novel stimulus domains), whereas others

appear to be automatic (e.g., perceptual fluency of chunk-based in-
formation). However, it should be noted that it is not perfectly certain
that the Hendricks et al. (2013) concurrent load task completely
eliminated attentional resources; some amount of attention may still
have been available during learning.

Another way to manipulate attention is by capitalizing on its se-
lective nature. Turk-Browne et al. (2005) did so by creating two in-
terleaved streams of differently colored visual regularities and then
instructing participants to detect repetitions in one stream but not the
other. Across several experiments, Turk-Browne et al. (2005) de-
termined that learning of the statistical regularities only occurred for
the attended stream, not for the unattended stream. They concluded
that visual learning of sequential regularities both is and is not auto-
matic: it requires attention in the sense that the regularities are only
learned if the stimuli are selectively attended; but learning is automatic
in the sense that it can occur incidentally (i.e., in the face of a cover task
that provided no information about the presence of regularities) and
does not necessarily result in conscious awareness of what was learned.
Selective attention therefore may act as a “gate” for statistical learning,
at least for certain learning situations and task paradigms (e.g., Baker
et al., 2004; Emberson et al., 2011; Toro et al., 2005; Turk-Browne
et al., 2005).

Interestingly, there appears to be a reciprocal relationship, in which
learning itself can modulate attention (Alamia and Zénon, 2016; Hard
et al., 2018; Zhao et al., 2013). That is, attention affects learning by
facilitating encoding of particular aspects of the input; and yet, learning
itself can affect attention, for instance by creating a “pop-out” effect,
drawing (exogenous) attention to input that violates the expectations
that have been generated based on previous experience (Kristjansson
et al., 2007). In support of this idea, Sengupta et al. (2018) recently
found that functional connectivity between brain networks supporting
attention and working memory processes changed following exposure
to the statistical regularities presented in an artificial language.

Attention also plays a crucial role in the framework of de Diego-
Balaguer et al., 2016d, in which top-down control of attention (i.e.,
endogenous attention) is a prerequisite for learning nonadjacent but not
adjacent sequential dependencies. Consistent with such a dissociation
are findings from Romberg and Saffran (2013). They constructed arti-
ficial languages in which the first and third items of 3-word phrases had
nonadjacent deterministic relationships while the intervening elements
had adjacent probabilistic relationships with the surrounding two
items. Although adults were able to demonstrate learning of both the
adjacent and nonadjacent dependencies, higher confidence ratings on
nonadjacent trials were associated with higher accuracy, while greater
confidence on adjacent trials was not associated with greater accuracy.
This may suggest that learning of the nonadjacent dependencies oc-
curred explicitly while learning of adjacent dependencies was accom-
plished by more implicit means. Interestingly, Turk-Browne et al.
(2005) pointed out that, because their design involved two interleaved
streams of stimuli, learning was occurring in many cases over inter-
vening items, thus requiring learning of nonadjacent dependencies.
Together these findings are consistent with the idea that selective at-
tention perhaps is most needed for learning nonadjacent dependencies
across a temporal stream (Diego-Balaguer et al., 2016).

A different perspective, however, stresses not only the necessity of
attention for pattern learning, but also its sufficiency (Pacton and
Perruchet, 2008; Perruchet and Vinter, 1998). Under this view, the
learning of patterns in input is a natural consequence of attentional
processing due to the laws of memory and associative learning. From
this perspective, attention may be necessary not only for learning
nonadjacent but also adjacent dependencies (Pacton and Perruchet,
2008). However, as reviewed previously, it appears that adjacent-item
chunks can also be learned without the availability of attentional re-
sources (Hendricks et al., 2013).

Other studies are consistent with the notion that while some aspects
of learning require attention or intention to learn, other aspects of
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learning can indeed proceed automatically and under incidental con-
ditions. For instance, Bekinschtein et al. (2009) (see also Wacongne
et al., 2011) used a local-global paradigm in which auditory sequences
of pure tones that contained either local (within-sequence) or global
(across-sequence) violations were presented. For instance, in “XXXXXY”
the “Y” is a local violation in this sequence because it violates the ex-
pected pattern of “X’s”. However, after repeated exposures of
“XXXXXY”, if the sequence “XXXXXX” is then encountered, the final “X”
in the sequence becomes a global violation because the “Y” is expected
after exposure to the “XXXXXY” sequences. Bekinschtein et al. (2009)
found that the local deviants were processed automatically and non-
consciously; these types of violations were immune to attentional ma-
nipulations and were even elicited in coma patients as measured by
event-related potentials (ERPs). On the other hand, the global deviants
required explicit or controlled processing: they were accompanied by
conscious awareness in healthy participants; in coma patients the ERPs
related to these types of deviants were not detected.

Thus, it appears likely that both “implicit” (i.e., attention-in-
dependent / automatic) and “explicit” (i.e., attention-dependent)
learning processes operate alongside each other. Such “dual-theory”
approaches are common in the literature. For instance, Dale et al (2012)
proposed that during a learning episode, implicit associative or reactive
learning occurs initially, which leads to the formulation of predictive
“wagers” that steadily become more correct and that in turn lead to
explicit awareness of the learned patterns. This perspective is also
consistent with research using a predictor-target paradigm in which
visual “target” stimuli are predicted to varying degrees by “high” or
“low” predictor stimuli; although learning is incidental, over the course
of the experiment, adults and children display the emergence of a P300-
like ERP component elicited by the high predictor stimulus (Jost et al.,
2015). This ERP component is strongly related to participants’ con-
scious awareness of the predictor-target contingency (Singh et al.,
2017). This attention-based ERP component is distinct from partici-
pants’ learning as assessed through reaction times, which appeared to
be indexing learning of the contingencies occurring outside attention
and awareness (Singh et al., 2018).

Similarly, Batterink et al. (2015) proposed that implicit and explicit
learning systems operate in parallel, with the implicit system more or
less always engaged but the explicit system optional. They suggested
that in the standard familiarity task often used in statistical learning
research, the familiarity judgement reflects explicit knowledge but that
implicit learning can also be displayed and measured indirectly using
reaction times or possibly ERPs. Another dual-system approach is that
of Keele et al. (2003), who proposed a theoretical perspective based on
a review of findings from the SRT task. In their view, a dorsal neural
system mediates implicit learning of unimodal or unidimensional sti-
muli, whereas a ventral system mediates the learning of cross-modal or
cross-dimensional input, which can involve both implicit and explicit
learning mechanisms. This last tenet is consistent with Walk and
Conway (2016) who proposed that implicit learning is sufficient for
learning unimodal sequential regularities (i.e., sequential dependencies
between items in the same perceptual modality) but that additional
cognitive resources such as selective attention or working memory may
be required to learn cross-modal sequential patterns. Similarly,
Daltrozzo and Conway (2014) also proposed a two-system view of
pattern learning: a bottom-up implicit-perceptual learning system that
develops early in life and encodes the surface structure of input; and a
second system that is dependent on attention, develops later in life, and
relies to a greater extent on top-down information to encode and re-
present more complex patterns.

Finally, insight can also be gained from a related though somewhat
distinct research literature on category learning. Smith and colleagues
(Smith and Grossman, 2008; Smith et al., 1998) proposed that there are
multiple types of category-learning systems: rule-based and similarity-
based. They proposed that rule-based category learning involves se-
lective attention and working memory processes to enable a decision to

be made about whether an item belongs to a particular category. On the
other hand, similarity-based categorization processes can be mediated
by the involvement of both explicit and implicit learning processes. The
implicit learning system involves processes such as perceptual fluency
and perceptual priming; that is, one decides whether an item belongs to
the category in question in terms of the ease with which the perceptual
features of the item can be processed (Smith and Grossman, 2008).

Taken together, we believe the evidence supports the idea that
statistical learning reflects both implicit / automatic and attention-de-
pendent / explicit aspects of processing. The attention-dependent
learning system shares similarities with Baars (1988; 2005) global
workspace theory of consciousness, in which consciousness is construed
as a limited capacity attentional spotlight that “enables access between
brain functions that are otherwise separate” (Baars, 2005, p.46). What
determines the mode of learning (explicit vs. implicit) likely depends at
least in part on the type of input to be learned; some types of structures
appear to require attention to adequately process and encode the pat-
terns, such as nonadjacent dependencies (de Diego-Balaguer et al.,
2016d), global patterns (Bekinschtein et al., 2009), cross-modal de-
pendencies (Keele et al., 2003), and rule-based processing (Hendricks
et al., 2013; Smith et al., 1998). Other factors that may affect the in-
volvement of automatic versus attention-dependent mechanisms in-
clude whether learning is assessed through the use of direct/explicit
judgments versus indirect measures such as reaction times (Batterink
et al., 2015) and whether learning requires generalization or transfer to
new stimulus sets (Hendricks et al., 2013). We furthermore propose that
the automatic learning system is “obligatory” in the sense that it is al-
ways active, whereas the attention-dependent system is optional and is
only engaged when selective attention and working memory are
brought to bear on the learning task (Batterink et al., 2015) via the
involvement of endogenous or exogenous attentional mechanisms. It is
also possible that the involvement of one or both systems is not an
“either-or” phenomenon but may be graded; as learning proceeds,
exogenous attention can be increasingly drawn to the regularities in
question (Alamia and Zénon, 2016), which would necessarily gradually
activate the attention-dependent learning system. Thus, the involve-
ment of automatic versus attention-dependent learning mechanisms
could likely change across a learning episode or across multiple epi-
sodes.

3.4. An interim summary

Based on the preceding three sections, it is clear that statistical
learning: 1) consists of both modality-specific and domain-general
learning mechanisms; 2) can be used to learn patterns along a con-
tinuum of complexity from relatively simple to more complex struc-
tures; 3) and involves both implicit / automatic as well as explicit /
attention-dependent modes of learning. We furthermore propose that
these three factors “line up” so to speak, suggesting the involvement of
two primary modes of learning (see Fig. 3). Specifically, statistical
learning is mediated through the functioning of at least two (or more)
distinct processing mechanisms. The first is the classic “implicit”
learning system, that proceeds automatically and with minimal atten-
tional requirements, is likely a perceptual-based process, and can
mediate the learning of local, unimodal, and associative-based patterns.
The second is an explicit, attention-dependent system that is necessary
for learning nonadjacent, global, and crossmodal dependencies; it is
also needed for when transferring learning to new stimulus sets or
contexts. These two systems likely operate in parallel with each other
(Batterink et al., 2015), and each can be more or less engaged de-
pending on the learning requirements and situation (Daltrozzo and
Conway, 2014).

This dual-system approach has similarities to the distinction be-
tween “model-based” and “model-free” reinforcement learning (e.g.,
Savalia et al. 2016; Kurdi et al., 2019) which describes learning that is
goal-directed, flexible, and reliant upon long-term knowledge (i.e.,
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model-based learning) versus learning that is data-driven, automatic,
and relatively inflexible (i.e., model-free learning). Together, these two
types of learning provide complementary ways to best learn about and
interact with the environment.

However, it should be pointed out that the two systems may pos-
sibly operate competitively, rather than independently of or in co-
operation with one another, as has been suggested up to this point. For
instance, some studies have shown that executive control processes may
have an antagonistic relationship with implicit pattern learning
(Ambrus et al., 2019; Filoteo et al., 2010; Nemeth et al., 2013; Tóth
et al., 2017; Virag et al., 2015). Virag et al. (2015) observed a negative
correlation between executive functions and implicit learning as mea-
sured by a variant of the SRT task. And Nemeth et al. (2013) used
hypnosis to reduce explicit attentional processes in their subjects, which
resulted in improved learning on the SRT task. At present it is not clear
under what conditions these two systems act synergistically versus
antagonistically but one possibility is that it is due to the task re-
quirements. Most of the studies cited above that observed a competitive
relationship used the SRT task, which differs in a number of important
respects with other statistical learning tasks such as the segmentation
task or AGL task. One important difference is that the SRT task requires
a motor response on each trial, whereas the other two tasks have a
passive exposure phase that involves perceptual learning or memory-
based encoding without a motor response. It is possible that top-down
attentional control interferes with the type of trial-by-trial stimulus-
response learning that the SRT task elicits; it is currently an open
question whether this holds true for learning during other types of
statistical learning tasks that do not involve the same type of stimulus-
response learning.

In the next section (3.5), we review the neuroanatomical bases of
statistical learning through the lens of the operation of these two pro-
posed learning systems. Then, we examine how each type of learning
system might change across human development and may differ across
phylogeny (sections 3.6 and 3.7) before concluding with a summary of
ten core principles that flesh out the neurocognitive mechanisms un-
derlying statistical learning (section 4).

3.5. What are the neuroanatomical bases of statistical learning?

Brain areas that have shown significant activation during different
types of statistical learning and implicit learning tasks include practi-
cally the entire brain, including: perceptual regions (e.g., Turk-Browne
et al., 2010), parietal cortex (e.g., Forkstam et al., 2006), prefrontal
cortex and Broca’s area specifically (e.g., Abla and Okanoya, 2008), as
well as subcortical regions such as the hippocampus (and medial tem-
poral lobe, MTL) (e.g., Schapiro et al., 2014), and basal ganglia (e.g.,
Karuza et al., 2013). Rather than reviewing all of the available evidence
in detail, we instead focus on theoretical perspectives that can help
explain why certain brain regions may or may not be active depending
on the task or situation. For added focus, we mainly discuss the neo-
cortical bases of statistical learning, while still acknowledging the im-
portant role played by subcortical structures such as the hippocampus,
cerebellum and basal ganglia (see Batterink et al., 2019). At the end of
this section we then discuss how the neocortical systems proposed here
interact with “classic” learning and memory systems (i.e., declarative
and procedural memory), thought to be mediated largely by subcortical
structures.

One perspective that is consistent with the neural findings showing
multiple brain regions involved with statistical learning is P.J. Reber's
(2013) proposal that implicit learning reflects a general principle of
plasticity of neural networks that results in improved processing. That
is, learning is an emergent property of neural plasticity that is pervasive
and universal, not localized to a particular brain region, nor confined to
any specific task, but contributes to cognition and behavior very
broadly. Under this view, implicit learning cannot be defined ex-
clusively by whether or not it involves for instance the MTL or con-
scious awareness; instead, it reflects the gradual tuning of neural net-
works and synapses to adapt to statistical structure encountered in the
environment. Such neural plasticity and tuning generally is associated
with reduction of neural activity that reflects increased processing ef-
ficiency (P.J. Reber, 2013).

Under this “plasticity of processing” perspective of statistical
learning, the areas of the brain that will reflect learning are those same
areas involved in processing the input in question. Thus, it is perhaps

Fig. 3. Depiction of two distinct learning mechanisms, “implicit” and “explicit”, in relation to the factors of input modality, input complexity, and attention.
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not surprising that perceptual regions of the brain are implicated in
statistical learning (Turk-Browne et al., 2010), as perceptual processing
is necessary in order to encode the stimuli in the first place. Note,
perceptual areas have shown activity reflecting not just perception of
the individual stimuli, but learning of the patterns themselves. But what
about studies showing activity in frontal, parietal, subcortical, and
other areas? It is likely that general constraints on processing in dif-
ferent neural networks determines which brain areas will reflect
learning. There appear to be two primary sets of cortical regions in-
volved in implicit learning of sequential structure (Conway and Pisoni,
2008): sensory/perceptual regions as already discussed, but also frontal
regions such as the prefrontal cortex (PFC) that have connective loops
with subcortical networks including the basal ganglia and cerebellum.
For tasks involving processing of sequential (i.e., temporal) structure in
particular, working memory and selective attention are likely neces-
sary, which in turn relies on PFC and associated brain networks. Thus,
these two systems – perceptual and frontal – together constitute a dy-
namic and adaptive cortical network that is used to perceive, encode,
and adapt to most types of input patterns encountered in the world.

The distinction between frontal “executive” cortical regions and
posterior “perceptual” regions is nicely summarized by Fuster and
Bressler (2012), who argued this dichotomy reflects a general char-
acteristic of neural functioning, with frontal areas needed for actions
(e.g., behavior, language) as well as higher-level planning, and pos-
terior regions involved in sensory, perceptual, and memory operations.
Under this view, all aspects of cognition involve the operation of large-
scale cortical networks, not modular regions, and in particular involves
the interaction of the posterior and frontal systems. Lateral PFC is ar-
gued specifically to be crucial for the temporal organization of behavior
(Fuster, 2001). Furthermore, working memory neuroimaging studies
generally show lateral PFC involvement in conjunction with posterior
areas that vary on the sensory modality of the particular input type that
is encountered: “If the memorandum is visual, that posterior region
includes inferotemporal and parastriate cortex ….. if it is auditory,
superior temporal cortex; if it is spatial, posterior parietal cortex”
(Fuster and Bressler, 2012, p.215). Integrating Fuster and Bressler's
(2012) view with P.J. Reber's (2013) leads to the following conclusion:
items encountered in a temporal sequence necessarily recruit PFC as
well as sensory/posterior regions (the exact sensory region active de-
pending on the input modality) in order to process the sequence; if that
particular type of sequence is encountered repeatedly, containing
structural regularities, then the networks involved in processing these
sequences (i.e., PFC and perceptual regions) will show plasticity and
tuning, resulting in learning of the underlying structure.

In a similar perspective, Hasson et al. (2015) noted that virtually all
cortical circuits can accumulate information (i.e. learn) over time, but
that timescales vary hierarchically in the brain: lower sensory areas can
only process information on the order of 10 s to 100 s of milliseconds,
whereas higher-order areas can process information over much longer
timescales (many seconds or minutes) (see also Farbood et al., 2015;
Kiebel et al., 2008). This appears to be due to the hierarchical ar-
rangement of neural systems. That is, lower-order sensory areas re-
spond to relatively simple features (such as single tones or lines of
particular orientations), whereas higher-order areas integrate across
this information to represent increasingly complex stimuli (such as
speech or faces). This same general “rostro-caudal” framework appears
to apply to temporal dynamics as well, in which timescales of re-
presentation generally increase as one moves from lower sensory areas
to higher-level frontal areas (Kiebel et al., 2008).

Hasson et al. (2015) furthermore argued against a memory versus
processing distinction; instead, in their view, prior information con-
tinuously shapes processing in the present moment, very similar to P.J.
Reber's (2013) view of implicit learning consisting of cortical tuning of
processing networks. In addition, Hasson et al. (2015) argued for the
existence of modulatory circuits: “attentional control processes sup-
ported by fronto-parietal circuits” (related to traditional working

memory operations), “and binding and consolidation processes sup-
ported by [medial temporal lobe] circuits (related to episodic
memory)”. Thus, the general principle of cortical plasticity is con-
strained by differences in processing characteristics of different areas of
the brain (e.g., short vs. longer timescales) but is also modulated by
attentional control, working memory, and consolidation processes. We
thus suggest there are at least two primary neurocognitive (primarily,
cortical-based) mechanisms that embody statistical learning: 1) gradual
tuning of cortical networks based on experience (i.e., cortical plasti-
city); and 2) top-down modulatory control mechanisms that guide se-
lective attention and working memory, which is especially needed for
learning patterns that require integration of information across time
(i.e., statistical patterns in temporal sequences).

As reviewed in section 3.1, statistical learning appears to be partly,
and perhaps largely, based on perceptual processing mechanisms
(Conway and Christiansen, 2005; Frost et al., 2015). However, based on
the review in this section so far, we now know there are at least two
reasons why sensory/perceptual regions cannot mediate all aspects of
statistical learning. One is that due to the sizes of their temporal re-
ceptive windows, sensory areas cannot process information that spans
longer than the order of milliseconds. Thus, learning sequential patterns
over a temporal sequence, especially for long-distance or nonadjacent
dependencies, cannot occur in these perceptual processing brain re-
gions, but must rely on downstream networks including frontoparietal
networks and perhaps PFC specifically. Second, the PFC and related
frontoparietal networks appear to modulate learning in any given si-
tuation, even if these frontal regions don’t reflect cortical tuning and
plasticity themselves. For example, through frontoparietal network in-
volvement, attention to particular stimuli may occur, directing per-
ceptual processing regions to then engage with those inputs, which over
the course of repeated experience, results in those perceptual regions
exhibiting neural plasticity and learning. It is also likely that the fron-
toparietal networks themselves may show neural tuning and plasticity
with exposure, allowing learning itself to modulate attention, as re-
viewed in section 3.3.

This framework where learning (perhaps of sequential input speci-
fically) might involve a combination of higher-level frontal areas as
well as lower perceptual regions, is consistent with other relevant
theoretical perspectives. For instance, Uhrig et al. (2014) provided
evidence consistent with the idea that learning sequences occurs at
hierarchical levels in the brain: lower/modality-specific areas are in-
dependent of attention and can mediate “local” processing operations
whereas higher levels are attention-dependent and are needed for more
“global” processing. Thothathiri and Rattinger (2015) further argued
that frontal areas and controlled processing are necessary for sequence
processing specifically. Their argument, based on a review of both
neuroimaging and neuropsychological studies and focusing on se-
quence production, is that sequencing involves cognitive control (the
ability to order items, reject incorrect items, resolve interference, and
choose the correct item to produce). Therefore, the frontal lobe (spe-
cifically, left ventrolateral PFC) is needed for sequencing because cog-
nitive control functions are necessary for selecting the correct stimulus
among various alternatives in a sequence.

Cognitive control and selective attention are likely important not
just for sequence production but also for sequence learning, especially for
long-distance or nonadjacent dependencies. As mentioned earlier, de
Diego-Balaguer et al., 2016d proposed that in order to learn a se-
quential nonadjacent dependency, cognitive control is needed to inhibit
processing of intervening items occurring between the nonadjacent
dependencies and to focus on the long-distance dependency itself. In-
deed, areas of the PFC such as left inferior frontal gyrus (LIFG, or
Broca’s region) have often been implicated in sequence learning that
specifically involves structures that contain long-distance regularities
(e.g., Bahlmann et al., 2008; Friederici et al., 2006). In fact, LIFG has
been proposed to be a “supramodal hierarchical processor” (Tettamanti
and Weniger, 2006). It is possible that the reason that LIFG may appear

C.M. Conway Neuroscience and Biobehavioral Reviews 112 (2020) 279–299

288



to be necessary for hierarchical operations is that hierarchical de-
pendencies necessarily require the processing (and learning) of long-
distance dependencies, which relies on PFC involvement.

Finally, a crucial aspect of statistical learning appears to be pre-
diction and expectation (Dale et al., 2012), which is mediated by both
sensory and downstream areas such as the PFC (though it is possible
that the PFC generates the predictions and subsequently modulates
sensory areas, Bubic, 2010). In particular, temporal sequencing appears
to be an area where prediction is most important due to the prominent
role of time and uncertainty (Bubic, 2010). An important part of
making predictions of upcoming events is the necessity of inhibiting the
representation of events or stimuli that are not predicted, which likely
involves PFC (Bar, 2009). However, predictive processing appears to be
inherent to all levels of the hierarchically organized nervous system
(Friston, 2005) and thus appears to go hand-in-hand with a “plasticity
of processing” approach. Furthermore, Huettig (2015) suggested a dual-
system account of predictive processing similar to our proposal of sta-
tistical learning consisting of an implicit, automatic processing system
and an explicit, attention-dependent one.

To summarize, there are a number of considerations that can illu-
minate why certain brain regions show consistent activation in studies
of statistical learning. Under a “plasticity of processing” approach (P.J.
Reber, 2013), whatever neural substrate is involved in processing the
input in question, through repeated exposure and experience, becomes
tuned through general principles of neural plasticity to become more
efficient at processing that type of stimulus, resulting in lower levels of
neural activation. This explains why it is common to observe a variety
of distributed neural regions active for different kinds of tasks and input
types, such as auditory and visual processing regions during auditory
and visual statistical learning tasks, respectively. In addition, the brain
is organized hierarchically, with upstream brain regions showing rela-
tively short temporal receptive windows and downstream areas (such as
PFC) showing the largest temporal receptive windows. This acts as a
further constraint on processing: for sequences and especially long-
distance or global dependencies, only brain regions with temporal re-
ceptive windows that are large enough to process the stimuli across
longer periods of time will reflect learning of such dependencies. Fi-
nally, in addition to the general mechanism of cortical plasticity, the
involvement of PFC and frontoparietal networks can act as a mod-
ulatory mechanism on learning, providing top-down control of atten-
tion and cognitive control, which can affect and direct learning, espe-
cially for more complex patterns such as hierarchical or long-distance
dependencies. This distributed versus specialized dichotomy appears to
map loosely onto the “implicit / automatic” and “explicit / attention-
dependent” distinction outlined in section 3.4 and Fig. 3, with cortical
plasticity instantiated in lower perceptual regions reflecting attention-
independent, automatic implicit learning mechanisms, and downstream
brain regions reflecting attention-dependent specialized functions
needed for processing and learning certain aspects of structural reg-
ularities, especially those that require integration over longer periods of
time.

However, as reviewed earlier in section 3.4, some research suggests
that attention-independent and attention-dependent systems might
operate antagonistically, rather than synergistically. That is, frontal-
based executive and cognitive control functions might operate compe-
titively with more implicit forms of learning (e.g., Nemeth et al., 2013).
For instance, Tóth et al. (2017) used EEG to measure functional con-
nectivity during implicit sequence learning with the SRT task. They
found that learning performance was negatively correlated with func-
tional connectivity in anterior sites, which they proposed suggests that
top-down attentional control interferes with automatic, implicit
learning of the visual-motor sequences. More recently, Ambrus et al.
(2019) investigated the relationship between these two systems using
inhibitory transcranial magnetic stimulation (TMS) on the dorsolateral
prefrontal cortex (DLPFC) while participants engaged in the SRT task.
The results revealed that disrupting this area of the frontal lobe resulted

in better learning of nonadjacent dependencies. Thus, these findings
appear to show that at least for the SRT task, frontal-mediated executive
and attentional functions act antagonistically with implicit learning,
with the latter improving when the former are weak or disrupted.

The framework proposed here has been focused mainly on neocor-
tical processing mechanisms. However, subcortical structures such as
the hippocampus, cerebellum, and basal ganglia clearly play a central
role in learning and memory more generally, and perhaps statistical
learning specifically. For instance, the cerebellum is known to play an
important role in associative motor learning (Steinmetz, 2000) but also
possibly non-motor learning and other cognitive functions (e.g.,
Desmond and Fiez, 1998; Ivry and Baldo, 1992; Timmann et al., 2010).
The classic memory systems view holds that declarative memory –
which refers to the recall and recognition of facts and events – depends
on the hippocampus and MTL (e.g., Squire, 2004). Procedural memory
on the other hand – a type of nondeclarative and largely implicit form
of learning – relies specifically on the basal ganglia, though the cere-
bellum also appears to play a role (Ullman, 2004; Ullman et al., 2020).
These two forms of memory likely are both involved during statistical
learning (Batterink et al., 2019; Sawi and Rueckl, 2019), possibly in a
competitive manner. The MTL and basal ganglia often show competi-
tive interactions, which may be modulated by the PFC (Poldrack and
Rodriguez, 2004). One way to unite the cortical perspective presented
above with the workings of subcortical structures is to take a com-
plementary learning systems approach (e.g., O’Reilly and Norman,
2002). Under this view, there is a trade-off between different types of
learning and memory, necessary in order to achieve different goals and
to meet certain demands, which is best handled by functional specia-
lization of brain regions. For instance, the hippocampus is well-suited
for rapidly encoding arbitrary associations and memories of specific
events, while the neocortex can handle slowly developing representa-
tions of the general statistical structure of the environment (O’Reilly
and Norman, 2002). Atallah et al. (2004) proposed a tripartite model
consisting of the hippocampus (for rapid learning of specific events and
details), posterior neocortex (for learning general statistical information
about the environment), and the PFC (with connections to the basal
ganglia, for maintaining information in an active state). Together, these
three brain systems can support different types of behavioral functions,
with each brain area satisfying different kinds of demands. The cortical
model proposed above encompasses two of the three components of this
tripartite model (the posterior neocortex and PFC), but we acknowledge
the recent work suggesting that the hippocampus also plays a role in
statistical learning and needs to be integrated into such a model
(Schapiro et al., 2014). More work is needed to outline the exact in-
teractions between the cortical systems outlined here and the other
(subcortical) brain systems underlying learning and memory more
generally.

3.6. How does ontogeny constrain learning?

Most aspects of sensorimotor, cognitive, and social functioning in-
crease from childhood to adulthood (Plebanek and Sloutsky, 2017). Is
the same true for statistical learning? At least some aspects of statistical
learning, such as the learning of adjacent transitional probabilities, are
present from very early in development. For instance, auditory learning
of adjacent transitional probabilities is clearly available by 8-months
(Saffran et al., 1996) and possibly even at birth (Teinonen et al., 2009).
Similarly, visual adjacency learning has been demonstrated at 2 months
(Kirkham et al., 2002) and in newborns (Bulf et al., 2011). Similarly,
the detection of adjacent-item repetition structure also appears to be
available very early in life (Endress et al., 2009; Gervain et al., 2008).
This evidence of some aspects of statistical learning developing very
early is consistent with A.S. Reber's (2003) classic view of implicit
learning as being an invariant ability, present across all (typically de-
veloping) individuals, with very little individual variation or change
across development (Amso and Davidow, 2012; Jost et al., 2015).
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On the other hand, other evidence points to a more complex de-
velopmental picture. When visual input sequences were created that
allowed separate investigation of co-occurrence frequency information
and transitional probabilities, a developmental progression was found,
with 2.5-month-olds showing sensitivity to co-occurrence frequency
only, but 4.5-month-olds and older infants showing sensitivity to
transitional probabilities as well (Marcovitch and Lewkowicz, 2009).
Similarly, 5-month-olds were able to segment visual sequences that
contained redundant co-occurrence frequency and transitional prob-
ability cues, but 2-month-olds were unable to do so (Slone and Johnson,
2015). Thus, potentially important changes occur in infants’ capacity to
track statistical patterns in visual sequential input between 2 and 5
months of age, likely due to developmental changes to attention and
memory (Slone and Johnson, 2015).

Complicating the developmental findings is that, as reviewed above,
statistical learning itself appears to be a heterogeneous construct (e.g.,
Arciuli, 2017; Daltrozzo and Conway, 2014; Thiessen and Erickson,
2013). If there are multiple neurocognitive processes underlying sta-
tistical learning, then each one may be governed by different devel-
opmental constraints, leading to different patterns of development de-
pending on what aspect of statistical learning is being measured in a
given study. Thus, taking a multiple-systems approach to understanding
statistical learning may provide some clarity. As an example, Janacsek
et al. (2012) examined age-related changes in statistical learning in
over 400 individuals between 4 and 85 years of age using the SRT task.
They found that 4-12-year-olds had the greatest learning effects as
measured by RTs, with a dramatic decrease in learning ability around
12 years that continued to decline across the lifespan. However, accu-
racy scores were lowest in the children and elderly participants with
highest scores at the middle ages. Janacsek et al. (2012) suggested that
these findings may be the result of their measures tapping into two
separate learning systems, with accuracy related to voluntary atten-
tional control (an under-developed executive function mechanism in
early childhood) and RT related to involuntary mechanisms. Other
evidence for different developmental trajectories for different aspects of
learning includes the distinction between nonadjacent and adjacent
dependencies, with the former being not as easily learned early in de-
velopment as the latter (e.g., Gervain et al., 2008). In de Diego-Balaguer
et al. (2016d) view, the learning of nonadjacent dependencies develops
later in childhood, only when endogenous attentional control is mature,
which they propose is needed to learn these types of dependencies.
Thus, the type of input pattern appears to interact with age, with some
types of structures learnable early in development but others requiring
the development ofattention and memory mechanisms to support such
learning.

Interestingly, input modality might also interact with age to de-
termine learning success. Visual statistical learning (as measured by a
variation of the classic triplet segmentation task) was found to have a
gradual developmental progression between 5 and 12 years of age
(Arciuli and Simpson, 2011; Raviv and Arnon, 2017). On the other
hand, auditory learning showed no such age differences, at least within
this age range (Raviv and Arnon, 2017). A subsequent follow-up study
showed that the apparent modality differences might be driven by the
specific nature of the stimuli in terms of being composed of linguistic
stimuli (i.e., syllables) or not (Shufaniya and Arnon, 2018). That is, the
most recent evidence suggests that whereas statistical learning of
nonlinguistic auditory and visual input may show a steady increase
with age, auditory learning of linguistic materials may be devel-
opmentally invariant (Raviv and Arnon, 2017; Shufaniya and Arnon,
2018). It is important to realize, however, that there may be other
important developmental changes occurring earlier in life, before age 5,
that are not captured by these two studies.

Paradoxically, some aspects of statistical learning might actually be
more efficient earlier in development, when cognitive abilities such as
top-down attentional control and working memory have not yet
reached mature levels of ability (Thompson-Schill et al., 2009). For

instance, Plebanek and Sloutsky (2017) showed that 4- and 5-year-old
children outperformed adults on a change-detection and a visual search
task. They suggested that it was because children at that age tend to
distribute attention across multiple aspects of stimuli, even when it is
not relevant to the goal. This more distributed attention resulted in
better processing of task-irrelevant information, which allowed the
children to perform better on the change-detection and visual search
tasks. Similarly, Juhasz et al. (2019) found that young children showed
superior learning on the SRT task relative to adolescents and adults
(note that this study also took into account the average response speed
differences between age groups, an important methodological point for
any developmental study that uses response times as the measure of
learning). The idea that cognitive limitations early in development may
confer a computational advantage for learning is not new (e.g., Elman,
1993; Newport, 1990). In general, it could be evolutionarily adaptive
for organisms to have more efficient and flexible learning mechanisms
early in development (e.g., Johnson and Wilbrecht, 2011). This “less is
more” proposal fits nicely with the theoretical framework offered by
Ambrus et al. (2019) and related studies suggesting that top-down ex-
ecutive control (instantiated in frontal-based neural circuits) may im-
pede (implicit) statistical learning. Under this framework, the reason
that young children perform better than adults on statistical learning is
that their PFC is under-developed, which allows for unhindered bottom-
up, data-driven learning of environmental patterns (Ambrus et al.,
2019).

As argued above, one general mechanism that underlies statistical
learning is cortical plasticity (P.J. Reber, 2013). The ability for cortical
networks to adapt and modify themselves based on environmental ex-
perience appears to be an intrinsic property of neural networks, present
across the lifespan (Pascual-Leone et al., 2011). However, it is also clear
that in general, neural plasticity declines with age (Kleim and Jones,
2008; Pascual-Leone et al., 2011). Furthermore, different neural sys-
tems may have different degrees of plasticity at different points in de-
velopment. For instance, different brain areas have different timescales
of synaptic proliferation and pruning, with motor and sensory proces-
sing areas maturing first, followed by spatial and language processing
regions (parietal lobe), and executive functions (frontal lobe) devel-
oping last (Gogtay et al., 2004). Furthermore, although there is a
general trend for reduced plasticity with age, there appears to be a
substantial amount of individual variability, with different individual
brains having different “starting points” of plasticity as well as having
different “slopes of change”, due to variations in genetic and environ-
mental factors (Pascual-Leone et al., 2011). The environment plays a
key role in dictating changes in plasticity due to the principle of neural
commitment: as learning and experience with the environment pro-
gresses, neural networks become entrenched and tuned to the particular
patterns of information experienced, making further plasticity-related
changes more difficult (Kuhl, 2004). This mechanism of entrenchment
has been argued to be a major factor giving rise to the existence of
sensitive periods in language and other cognitive and perceptual do-
mains (Kuhl et al., 2005; Meltzoff et al., 2009).

Thus, cortical perceptual plasticity changes over development
(White et al., 2013). Early in development, plasticity is driven primarily
by bottom-up (implicit) learning. Later in development (after the sen-
sitive period ends), plasticity becomes increasingly reliant on top-down
factors, such as knowledge of higher order representations and cate-
gories gained through experience, which directs attention to particular
features or types of input. In most cases, learning and plasticity is
achieved through the interaction of these two processes. However,
because of neural commitment and cortical maturation, there is a gra-
dual developmental decline in the extent that bottom-up processes
impact plasticity; at the same time, top-down influences such as se-
lective attention increasingly modulate the capacity for cortical plasti-
city (Kral and Eggermont, 2007; White et al., 2013). A key develop-
mental shift may occur around the age of 4 years (Mueller et al., 2018),
from automatic associative learning that dominates infancy, to
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attention-guided frontal cortex-based mechanisms that guide learning
(see also Deocampo and Conway, 2016).

Thus, the developmental trajectory of statistical learning appears to
be due to the functioning of at least two interacting mechanisms. Early
in development, statistical learning is driven almost entirely by bottom-
up, automatic, associative learning mechanisms that reflect principles
of cortical plasticity, in which neural networks slowly become attuned
to environmental regularities with experience. Later in development, as
selective attention and other executive functions mature, learning is
increasingly modulated by such abilities, allowing for the learning of
more complex input patterns such as nonadjacent dependencies and
other types of structural patterns that can be considered to be more
global. However, increased reliance on top-down control in learning,
and a concurrent reduction in cortical plasticity, may not always be
beneficial, leading to situations that paradoxically result in poorer
learning by adults relative to children (e.g., Ambrus et al., 2019;
Plebanek and Sloutsky, 2017). Likewise, in old age, as executive func-
tions begin to show decline, it is expected that statistical learning will
worsen, as both bottom-up and top-down mechanisms will be less ef-
fective.

In sum, it is argued that statistical learning is influenced by two
different types of mechanisms that change over developmental time
(see Daltrozzo and Conway, 2014). It should be pointed out that the
bottom-up learning system actually consists of multiple sub-systems
(i.e., visual, auditory, motor, etc.), with each neural sub-system having
different developmental trajectories in terms of cortical plasticity and
maturation. More research is needed to investigate the changes that
occur in statistical learning across development, with careful attention
paid to the factors reviewed so far (e.g., input modality, input com-
plexity, and the role of attention) and how they impact different com-
ponents of learning. Missing, too, from this view is the role of con-
solidation in learning and how that might change with age. For
example, Adams et al. (2018) suggested that the ability to “off-load”
information from the focus of attention into long-term memory might
improve with age; such developmental changes would likely impact the
efficiency of statistical learning as well. Thus, taking into account the
multiple processes that influence statistical learning will help illumi-
nate the complex developmental picture. Importantly, measures of
learning need to be developed that tap into each of the different pur-
ported aspects of statistical learning (Arciuli and Conway, 2018) in
order to track how each relevant process changes across the lifespan.

3.7. How does phylogeny constrain learning?

As with the developmental research, findings related to species
comparisons is complicated by the variety of methods and approaches
used to assess learning. Based on the review provided to this point, it is
proposed that statistical learning in nonhuman species is governed by
the operation of at least two partially dissociable learning systems, one
based on the principle of cortical plasticity that mediates basic asso-
ciative learning and perceptual processes, and the other a top-down
modulatory “executive” system that directs attention and allows for the
learning of more complex patterns. If true, then there are likely areas of
overlap across species for evolutionarily-conserved mechanisms, pri-
marily the learning of simple statistical associations mediated by me-
chanisms of cortical plasticity. In the same respect, it would not be
surprising to observe species differences for the learning of more
complex patterns such as nonadjacent dependencies or global patterns
that require integration over larger timescales, which are proposed to
be mediated by top-down cognitive control and attention processes
instantiated in the frontal lobe.

Such a distinction was proposed by Conway and Christiansen
(2001), who reviewed the extant findings on sequential learning in
nonhuman primates, and concluded that all species of primates de-
monstrate the ability to learn relatively simple patterns (such as re-
peating sequences and adjacent dependencies) but that species

differences are observed in the learning of more complex hierarchical
sequential structures that are characterized by nonadjacent de-
pendencies. This framework was based on earlier work, for instance, by
Johnson-Pynn et al. (1999), who showed that whereas children 2–3
years of age display hierarchically-based behavioral strategies for or-
ganizing nesting cups, three species of nonhuman primates (chimpan-
zees, bonobos, and capuchin monkeys) do not spontaneously display
such complex strategies, relying solely on simpler combinatorial ac-
tions. Furthermore, it was argued that these limitations in sequencing
abilities could be a key reason for why nonhuman primates do not
display human-like language (Conway and Christiansen, 2001). Such a
perspective was echoed by Hauser et al. (2002) who argued that what
nonhuman animals lack is a narrow faculty of language, specifically the
ability to compute complex syntactic hierarchical structures. Thus, in
both cases, the argument is that certain simpler kinds of pattern
learning are common across species, but that more complex processing
of hierarchical structure containing nonadjacent dependencies is found
only in some animal species (including humans).

Since Conway and Christiansen's (2001) and Hauser et al.'s (2002)
initial proposals, there have been demonstrations of learning of non-
adjacent dependencies in chimpanzees (e.g., Sonnweber et al., 2015)
and learning of center-embedded recursive structures in baboons (e.g.,
Rey et al., 2012). However, Rey et al. (2012) postulated that the ba-
boons were not learning the recursive structure using specialized
computational mechanisms as proposed by Hauser et al. (2002), but
rather were doing so based on more elementary learning mechanisms
such as associative learning and working memory processes. In an at-
tempt to understand the neural basis of auditory sequence learning in
rhesus monkeys, Uhrig et al. (2014) incorporated a version of the au-
ditory “local-global” paradigm used in previous human work as de-
scribed in sections 3.3 and 3.5. They used fMRI to determine that local
transitions were mediated by bilateral auditory areas, whereas the
learning of global rules showed more distributed activity in down-
stream prefrontal and parietal areas, similar to the findings found with
humans (Bekinschtein et al., 2009). Findings such as these suggest that
although sequence processing may be mediated by distinct systems for
learning different types of regularities, these systems appear to be
present at least in some nonhuman primate species and may be
common across human and nonhuman primates.

On the other hand, in a review of the structure of animal commu-
nication and learning in artificial grammar studies, Cate and Okanoya
(2012) concluded that nonhuman animals’ natural productions are only
as syntactically complex as finite-state grammars, not more complex
structures. Similarly, in a recent comparative investigation of statis-
tical-sequential learning, Rey et al. (2018) showed that both humans
and guinea baboons could learn local regularities (i.e., adjacent tran-
sitions between sequentially-presented items). However, humans but
not baboons were also able to extract the global structure of hier-
archically arranged sets of sequences. That is, learning the sequence
A1B1C1 involves local, adjacent transitions only. However, learning the
arrangement of this sequence A1B1C1 as it occurs in conjunction with
other sequences such as A2B2C2 and A3B3C3 involves a more global
understanding of the patterns that is not based on local transitions
alone.

Clearly, more research is needed to investigate the role of input
complexity in statistical learning across species. Wilson et al. (2013)
and Stobbe et al. (1598) have both argued for the importance of cross-
species research to better understand the origins and emergence of
statistical learning and its role in human functions. Petkov and Wilson
(2012) suggested that we need better ways to “bridge” findings between
humans and nonhumans by using similar methods across species, such
as eye-tracking and neuroimaging of nonhuman animals. They fur-
thermore argued that it is important to focus on the learning of finite-
state grammars (containing primarily adjacent dependencies) of
varying complexity in order to better understand the evolutionary
precursors of language and other human skills. As a recent example of
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such an approach, Heimbauer et al. (2018) used a SRT task with rhesus
macaques using a more complex finite-state grammar than typically
used with nonhuman primates, in order to probe the limits and extent
of learning. Though the monkeys were able to show learning and
generalization of this relatively complex grammar, for sequences up to
8 items in length, it took them hundreds of trials over multiple days to
do so, whereas humans demonstrated learning of a similarly complex
grammar within a single session (Jamieson and Mewhort, 2005).

In addition to input complexity, an area with even less research is
the role of input modality on nonhuman learning, as pointed out by
Heimbauer et al. (2018) and Milne et al., 2018b; Milne et al., 2018a. As
reviewed in section 3.1, there is evidence to suggest that the learning of
statistical patterns differs for different perceptual modalities, with
generally superior learning observed for auditory compared to visual
sequential patterns, at least in humans (e.g., Conway and Christiansen,
2005; Frost et al., 2015). It is not clear as of yet whether nonhuman
animals show similar constraints on sensory modality in regard to sta-
tistical learning. In one of the few studies to directly compare auditory
and visual statistical learning in both humans and nonhumans, Milne
et al., 2018b; Milne et al., 2018a showed comparable learning in hu-
mans and macaque monkeys. However, other research suggests in fact
that nonhuman primates may be better at visual temporal processing
compared to auditory processing (Merchant and Honing, 2014). These
modality differences were argued to be due to the nonhuman primate
brain having impoverished auditory-motor connections in comparison
to humans (Merchant and Honing, 2014). Such an inversion of the ty-
pical modality effect observed in humans has interesting implications
for the evolution of language learning mechanisms, and perhaps could
be a contributing factor for why humans but not nonhuman primates
show complex (auditory-vocal) linguistic abilities.

Finally, more work is needed to understand the neural under-
pinnings of statistical learning across species. There have been some
recent advances in this regard (e.g., Attaheri et al., 2015; Meyer and
Olson, 2011; Meyer et al., 2014; Milne et al., 2016; Petkov and Wilson,
2012; Wilson et al., 2015, 2017; Uhrig et al., 2014). The current neu-
roscience evidence supports a combination of modality-specific neural
networks (Meyer and Olson, 2011; Meyer et al., 2014; Uhrig et al.,
2014) and anterior regions of the brain including frontal cortex (Wilson
et al., 2017; Uhrig et al., 2014) that together support sequence pro-
cessing, prediction, and statistical learning in nonhuman primates
(Kikuchi et al., 2018). As reviewed above, a similar interplay between
downstream frontal areas and low-level sensory regions appears to
mediate statistical learning in humans (Conway and Pisoni, 2008).
Frontal brain regions, such as the PFC and perhaps Broca’s area espe-
cially, may differ across species and may be an important crucial factor
in the evolution of complex hierarchical functions such as language
(Tecumseh and Martins (2014)).

It is important to examine not just brain regions that are active or
elicited during tasks in nonhumans, but also the patterns of inter-
connectivity among different brain regions and the way that different
networks may have evolved to take on specialized functions in different
species. For example, humans, relative to other primate species, are
known to have a larger PFC, which may be due to an increase in white
matter and neural connections to the rest of the brain (Tecumseh and
Martins (2014)). Furthermore, there may be differences across species
in terms of how different neural pathways (ventral and dorsal) con-
necting frontal cortex to the rest of the brain are used to learn se-
quential patterns of varying complexity in language and other domains
(e.g., Wilson et al., 2017). It is also important to consider not just
learning abilities themselves, but also how learning mechanisms co-
evolved with attentional and motivational biases to direct learning and
support complex functions (Lotem and Halpern, 2012). Likewise, it is
important to consider how statistical learning is used by different spe-
cies in different ecological niches (Santolin and Saffran, 2018).

In sum, there is much we still do not know about how phylogeny
constrains statistical learning. There has been progress in three areas of

comparative research (input complexity, modality effects, and neural
bases) but there are more questions than answers at this time. We
suggest that considering statistical learning as being made up of two
primary types of mechanisms (cortical plasticity interacting with
higher-level modulatory control processes) might be helpful for con-
straining the types of research inquiries and hypotheses that are ex-
plored. The tentative proposal offered here is that associative-based
perceptual learning mediated through general mechanisms of cortical
plasticity will be conserved across species (Rey et al., 2018). For in-
stance, despite vast differences in brain size across mammalian species,
the temporal dynamics that govern neural communication and in-
formation integration is remarkably similar (Buzsáki et al., 2013). Si-
milarly, the use of neurotrophic factors, which impact neuronal survival
and differentiation in modulating synaptic plasticity, is relatively con-
served across animal species (Casey et al., 2015). Even so, despite the
apparent conservation of neural plasticity across species, there are
differences, even among mammals: for example, in rodents, neuro-
genesis is a lifelong process, whereas in humans, adult neurogenesis is
much more reduced (La Rosa and Bonfanti, 2018). However, at a be-
havioral level, it seems relatively clear that basic associative learning
and sequence learning abilities are relatively conserved (Wilson et al.,
2017).

We suggest that where species differences are observed, they are
likely to be due less to variations in cortical plasticity-based mechan-
isms and more to differences in higher-level cognitive processing, such
as top-down cognitive control, attention, and working memory pro-
cesses, supported by frontal cortex and related networks, and in the
different patterns of connectivity among PFC and sensory brain regions.
Thus, examining the way that frontal cortex, which mediates top-down
control of information-processing, interacts with bottom-up sensory-
motor processes, may offer insights into both commonalities and var-
iations across different species (Mishra and Gazzaley, 2016).

4. Ten core principles

Based on the review of findings related to these six areas of research,
we outline ten core principles that we believe provide a scaffolding for
the construct of statistical learning and lead to testable predictions to
help focus future research. Together, the principles argue for the ex-
istence of two primary sets of neurocognitive mechanisms or modes of
learning that interact to support statistical learning across a variety of
contexts. Each principle is described fully below and then presented
succinctly in Table 3.

1 Statistical learning is a multifaceted construct (e.g., Arciuli, 2017;
Daltrozzo and Conway, 2014; Thiessen and Erickson, 2013). We
specifically propose two primary cortical mechanisms that underlie
statistical learning. The first is based on the general principle of
cortical plasticity, which is not localized to any particular area but is
prevalent throughout the brain, that mediates basic associative
learning and perceptual learning processes. The second is a top-
down modulatory “executive” system (primarily centered in the
prefrontal cortex) that directs attention and allows for the learning
of more complex patterns. The operation of these two systems or
modes of learning likely occurs independently and in parallel
(Batterink et al., 2015), though the functioning of the executive
system can also emerge as learning occurs through the associative
system. These two cortical mechanisms also interact with hippo-
campal, cerebellar, and basal-ganglia based learning, with each
subcortical system contributing to learning depending on the de-
mands of the task and situation (Atallah et al., 2004).

2 The general property of cortical plasticity, which mediates bottom-
up, associative learning, is instantiated over multiple, hier-
archically-embedded networks (Hasson et al., 2015; P.J. Reber,
2013). When we perceive, encode, or act upon a given stimulus, the
particular neurocognitive processes that were active tune adaptively
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with experience, thereby facilitating further processing with the
same or similar stimuli. This “plasticity of processing” approach
explains the wide and distributed pattern of activity observed in
statistical learning neuroimaging studies (e.g., as reviewed in
Conway and Pisoni, 2008; Frost et al., 2015; Keele et al., 2003).
Furthermore, this type of learning based on cortical plasticity is
ever-present and obligatory, always being active.

3 Different areas of neocortex have different cortical processing cap-
abilities in terms of perceptual modality and temporal timescales
(Fuster and Bressler, 2012), and these processing differences pro-
vide constraints on which brain areas will reflect plasticity and
learning in any given situation (Frost et al., 2015). For instance,
posterior modality-specific perceptual brain regions generally en-
compass shorter timescales of processing (Hasson et al., 2015), and
thus can mediate the learning of local or adjacent dependencies in a
modality-specific manner. More anterior downstream regions such
as the PFC have longer timescales for integrating information
(Hasson et al., 2015), thus allowing for the processing and learning
of nonadjacent, long-distance, and global patterns.

4 Existing alongside the general principle of cortical plasticity are
endogenous attention and working memory processes that provide
top-down modulation of learning (Fuster and Bressler, 2012; Hasson
et al., 2015). Top-down modulation, a specialized process centered
primarily in PFC and related frontoparietal networks, is used to
direct attention and processing toward certain aspects of stimuli
encountered in the environment, and it may be necessary for
learning nonadjacent dependencies in temporal sequences (de
Diego-Balaguer et al. (2016d)). Top-down control also allows for
inhibition of stimuli or features contained in stimuli, in order for
selective attention to be deployed in strategic ways and thus is
crucial for learning patterns arrayed across temporal sequences,
such as crossmodal sequential dependencies (Walk and Conway,
2016) and global patterns that require integration over longer
timescales (Wacongne et al., 2011). Top-down control and en-
dogenous attention may also be needed for the expression of
knowledge; it may be particularly necessary when attempting to
generalize or apply knowledge to new settings such as when the
perceptual features are changed and a mapping between the old
patterns and new ones must be ascertained (Hendricks et al., 2013).
On the other hand, at least for some types of learning situations such
as perceptual-motor sequence learning embodied by the SRT task,
top-down control may actually interfere with or impede implicit
learning (Ambrus et al., 2019).

5 Central to statistical learning is prediction and expectation (Dale

et al., 2012), mediated across both sensory and downstream areas
such as the PFC (though it is possible that the PFC generates the
predictions and subsequently modulates sensory areas, Bubic,
2010). Prediction is particularly important for serial learning and
sequencing because of the prominent role of time and uncertainty in
temporal sequences (Bubic, 2010). Predictive processing appears to
be inherent to all levels of the hierarchically organized nervous
system (Friston, 2005) and thus goes hand-in-hand with a “plasticity
of processing” approach. Predictive processing consists both of im-
plicit/automatic as well as explicit, attention-dependent processing
(Huettig, 2015). An important part of making predictions of up-
coming events is the necessity of inhibiting the internal re-
presentations of events or stimuli that are not predicted, which
likely involves PFC (Bar, 2009).

6 Modality and domain effects arise due to plasticity of processing in
perceptual cortical networks, similar to the mechanism of percep-
tual priming (Conway and Christiansen, 2006; Frost et al., 2015;
P.J. Reber, 2013). Cross-modal learning may be possible though
only under particular conditions, such as when the cross-modal
dependencies are presented simultaneously in time, rather than
across a temporal sequence (Walk and Conway, 2016), or when
selective attention is deployed. Thus, domain-general cognitive
mechanisms such as selective attention are needed to gate or
modulate learning (e.g., Turk-Browne et al., 2005). Likewise, cer-
tain aspects of statistical learning appear to be domain-general in
the sense that some amount of transfer or correspondence across
different stimulus sets can occur, such as the recognition of repeti-
tion structures and other perceptual primitives (Endress et al., 2009;
Gomez et al., 2000). These cross-modal or domain-general functions
likely involve PFC and related attention and working memory pro-
cesses.

7 Learning can occur for a variety of input structures that vary in
complexity, ranging from simple associations between two stimuli
and perceptual “chunks” to more complex and highly variable pat-
terns that span across a temporal sequence and that form recursive
or hierarchical structure (Dehaene et al., 2015; Petkov and Wilson,
2012). The limited research suggests that complexity directly in-
fluences learning performance, with more complex input patterns
leading to lower levels of learning (Schiff and Katan, 2014). It ap-
pears that learning different types of structures entails different
processing requirements, with some types of perceptual-based and
simple patterns being learned relatively automatically and effort-
lessly (Hendricks et al., 2013), and more complex, nonadjacent
patterns requiring the involvement of selective attention or working

Table 3
: Ten core principles for statistical learning.

Principle Description

Multi-faceted Statistical learning consists of two primary cortical mechanisms: 1) associative and perceptual learning based on principles of cortical
plasticity; 2) top-down modulatory control of attention for learning more complex patterns

Cortical plasticity The primary mechanism of statistical learning is mediated by cortical plasticity, which results in reduced neural activity and
heightened behavioral/perceptual facilitation

Cortical processing constraints Cortical plasticity is influenced by differences in processing capabilities (i.e., perceptual modality, timescales)
Top-down modulation of learning Attention and working memory can modulate and gate statistical learning, by directing attention and processing to specific stimuli or

features, allowing for the learning of patterns arrayed across temporal sequences and/or crossmodal dependencies; however, in some
situations, top-down modulatory control may instead impede implicit pattern learning

Prediction and expectation Central to statistical learning of temporal sequences is prediction and expectation of upcoming stimuli/events
Modality effects Modality effects arise from plasticity of processing of perceptual brain networks
Input structures Statistical learning can occur for a variety of input structures; simpler patterns such as serial transitions and adjacent dependencies can

be learned automatically in a bottom-up fashion whereas learning more complex, global patterns require selective attention, working
memory, and cognitive control

Bidirectional relationship with attention Statistical learning and attention have a bidirectional relationship; attention can modulate learning and learning can affect levels of
attention

Ontogeny Plasticity-mediated associative learning dominates learning early in development; over developmental time, selective attention and
cognitive control mechanisms progressively become available to influence learning

Phylogeny Plasticity-mediated associative learning is relatively conserved across species; the learning of nonadjacent or hierarchical
dependencies, which requires specialized cognitive mechanisms, varies across species
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memory (de Diego-Balaguer et al. (2016d)). Thus, nonadjacent or
long-distance dependencies, as well as “global” learning that re-
quires integrating information across exemplars over time necessa-
rily requires processing by brain networks such as the PFC that can
handle information over these larger timescales (Fuster and
Bressler, 2012).

8 Statistical learning and attention have a bidirectional relationship:
attention can modulate or gate learning (Turk-Browne et al., 2005)
and learning itself can lead to heightened levels of attention for the
structure that has been learned (Zhao et al., 2013). However,
learning can also proceed in a relatively implicit or automatic
fashion. The involvement of these two primary “modes” or systems,
one explicit (attention-dependent) and the other implicit (attention-
independent) appears to occur in parallel (Batterink et al., 2015),
with the implicit system always “on” but the explicit system op-
tional. As reviewed, the learning of some types of input structures
appear to require the explicit system to greater extents, including
nonadjacent dependencies, global patterns, abstract rule-based
processing, and possibly cross-modal temporal patterns
(Bekinschtein et al., 2009; de Diego-Balaguer et al. (2016d); Walk
and Conway, 2016). Other types of patterns, such as chunks, can
likely be learned through implicit learning via a form of perceptual
learning (Chang and Knowlton, 2004; Hendricks et al., 2013) al-
though explicit, attention-based learning can also mediate the for-
mation of chunks in memory (Pacton and Perruchet, 2008). Con-
scious awareness of what is learned occurs when the strength or
quality of the representations reaches a threshold level (Cleeremans,
2011).

9 Ontogeny differentially constrains the development of different as-
pects of statistical learning (cortical plasticity and top-down mod-
ulatory control). Because cortical plasticity is a general property of
nervous systems, present in varying degrees across all brain net-
works and in all individuals across the lifespan, from a certain point
of view, plasticity-based statistical learning is likely relatively age-
invariant. However, this is an oversimplification; plasticity gen-
erally is heightened early in development before neural entrench-
ment results in the ending of sensitive periods (Kuhl et al., 2005;
White et al., 2013). Thus, plasticity-mediated associative learning
mechanisms dominate learning in infancy and early in development.
A second and independent ontogenetic constraint is due to the re-
latively late maturation of the frontal lobe (Thompson-Schill et al.,
2009), which mediates top-down control of learning. Thus, certain
aspects of learning that rely on selective attention and cognitive
control, such as the learning of nonadjacent and global regularities
as well as crossmodal temporal associations, is more effective later

in development when the frontal system matures (Daltrozzo and
Conway, 2014; de Diego-Balaguer et al. (2016d)). Later in life, in
old age, plasticity is still present but likely not at pre-sensitive
period peak levels; the frontal system also shows a certain amount of
decline in healthy aging (e.g., Van Petten et al., 2004). Thus, a full
account of developmental changes across the lifespan must take into
account the independent trajectories of these two mechanisms that
impact learning.

10 Phylogeny also constrains different aspects of statistical learning in
different ways. It is likely that neural plasticity is evolutionarily
conserved, and thus basic associative learning principles are likely
to be present across the phyla, at least in species that have nervous
systems (Rey et al., 2018). On the other hand, it is likely that top-
down modulatory control differs across species. This is expected to
result in a relatively attenuated ability to learn nonadjacent de-
pendencies, global patterns, and hierarchical structures (Conway
and Christiansen, 2001; Rey et al., 2018), which depend crucially on
the PFC and is believed to be less developed in most nonhuman
species (Tecumseh and Martins, 2014). There may be species dif-
ferences, too, in terms of neural connectivity and the integrity of
specific neural pathways that connect PFC to other brain areas
(Tecumseh and Martins, 2014). It is also expected that there may be
species-specific differences that vary based on ecological niche and
the unique selection pressures faced by the organism (Santolin and
Saffran, 2018), making it possible for instance that some species
excel at statistical learning but only in certain types of functions or
contexts.

5. Conclusion

In sum, it is proposed that the construct of statistical learning can be
decomposed into multiple components; primary among them are two
mostly dissociable, cortically-based, cognitive mechanisms (Fig. 4). The
first mechanism is based on the principle of neural plasticity, and
therefore encompasses the entire neocortex. Through experience with
particular types of patterned input, the brain networks involved in
processing that input will show improved processing due to cortical
tuning. This system is likely to be largely automatic and attention-in-
dependent and is constrained by the processing limitations of the cor-
tical network(s) in question. One such limitation is the timescale of
processing, with more posterior networks processing information over
shorter timescales, and more anterior networks able to process in-
formation over longer timescales. An additional constraint on proces-
sing is sensory modality, with modality-specific perceptual regions able
to show plasticity only for the types of input available to those

Fig. 4. A multicomponent model of statistical learning. The
first set of (“implicit”) mechanisms is based on the principle of
cortical plasticity, which allows networks to adaptively
change through experience. Posterior modality-specific net-
works allow for improved perceptual processing of input
patterns spanning short timescales (A: auditory; V: visual; T:
tactile; M: motor). More anterior networks can handle pat-
terns spanning across perceptual modalities and over larger
timescales. The second “executive” (or “explicit”) mechanism
is rooted in frontal lobe (prefrontal cortex, PFC) and fronto-
parietal networks that mediate top-down control of attention
and working memory to modulate learning and allow for the
learning of more complex patterns such as nonadjacent de-
pendencies. Not only does the executive system modulate
plasticity-based learning; but through the principle of plasti-
city, as learning occurs, attention itself can be affected,
drawing resources toward certain environmental events or
stimuli, thus affecting the operation of the executive system.
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networks. It is expected that the general principle of plasticity is present
across most individuals and species, though there may be variations
within development (increased plasticity prior to the end of the sensi-
tive period) as well as across species (with variations specific to the
ecological demands and requirements). In a sense, this first mechanism
can be thought of as “obligatory”; it is always online and active in
encoding regularities in the environment.

A second mechanism that acts in concert– or sometimes in compe-
tition – with the first is one that mediates top-down modulatory control
to help filter and selectively attend to particular inputs or features. This
“executive” system involves frontoparietal networks (and perhaps
specifically the PFC) that mediate endogenous attention and working
memory to modulate learning. This system is specifically needed to
learn nonadjacent and global regularities as well as crossmodal con-
tingencies across temporal sequences. This mechanism is less likely to
be available early in development; it is also likely to be found to varying
degrees across species but mainly in cognitively more advanced species
such as chimpanzees and humans. At least for the learning of percep-
tual-motor sequences, the executive system may actually impede
learning rather than contribute to it (Ambrus et al., 2019). One could
consider this second system to be “optional” in the sense that it does not
seem to be universally active in all situations or contexts, unlike the
first mechanism.

Note that this multi-component proposal is similar to and draws
upon a number of other theoretical frameworks (e.g., Arciuli, 2017;
Batterink et al., 2015; Daltrozzo and Conway, 2014; Frost et al., 2015;
Keele et al., 2003; P.J. Reber, 2013; Thiessen and Erickson, 2013).
However, the current proposal is the only one that addresses all six
factors reviewed above (i.e., how learning proceeds across different
input modalities and domains and for different types of input structures;
the role of attention in statistical learning; the underlying neuroanatomy
of statistical learning; and ontogenetic and phylogenetic constraints on
learning). This framework also makes specific and unique predictions
that future research can usefully examine. For instance, this framework
predicts that the learning of nonadjacent dependencies as well as global
patterns that span across time will necessarily require the involvement
of PFC and frontoparietal networks and related attentional and working
memory processes. Likewise, the learning of cross-modal sequential
dependencies will also require these same frontal-based neural pro-
cesses. It is also predicted that where statistical learning will differ
across age and across species will be for the learning of nonadjacent,
global, and cross-modal sequential patterns; on the other hand the
learning of perceptual chunks or local transitions in a sequence will be
relatively conserved across species and across age.

Finally, there are a number of outstanding questions that this review
did not address and thus remain as ripe areas for future research. Five
specific areas are highlighted here (see additional discussion by Arciuli
and Conway, 2018):

1) What is the relationship between statistical learning and other forms
of learning and memory? Although the stance taken here is that statis-
tical learning, implicit learning, and sequence learning are essentially
referring to the same underlying construct, it is also likely that different
tasks used to probe learning (e.g., the AGL task versus the SRT task)
may reflect partially dissociable aspects of learning. Likewise, further
work is needed to specify to what extent statistical learning overlaps
with for instance procedural memory (Ullman, 2004), category learning
(Smith and Grossman, 2008), or other forms of nondeclarative memory
(Squire, 2004). The evidence so far supports the notion that statistical
learning relies upon both procedural and declarative forms of memory
(Batterink et al. (2019), but more work is needed to work out the exact
interactions.

2) What is the relationship between statistical learning and language
processing and development? Although much work has highlighted the
role of statistical learning as a language learning mechanism (e.g.,
Nemeth et al., 2011; Romberg and Saffran, 2010), there are still un-
answered questions about which aspects of statistical learning map onto

which aspects of language (e.g., phonology, word learning, syntax, etc.)
at different points in development.

3) What is the relationship between statistical learning and development
in non-language domains? Because statistical learning is a general and
pervasive learning mechanism, it should impact a wide range of do-
mains in addition to language, such as music, perceptual and motor skill
development, and educational outcomes, but these connections are still
underspecified and thus represent potentially rich areas in need of
further investigation.

4) Which aspects of atypical development are associated with atypical
statistical learning abilities? There is a growing body of evidence sug-
gesting a link between atypical statistical learning and language
learning disabilities such as developmental language disorder (Obeid
et al., 2016), developmental dyslexia (Gabay et al., 2015), and autism
spectrum disorder (Jeste et al., 2015). There is also evidence that var-
iation in statistical learning abilities explains variability in language
outcomes in children who are deaf or hard of hearing (Conway et al.,
2011; Deocampo et al., 2018; Gremp et al., 2019). More work is needed
to understand which aspects of learning causally impact which aspects
of atypical development across a variety of clinical populations (c.f.,
Arciuli and Conway, 2018; Krishnan et al., 2016; Zwart et al., 2019).

5) Finally, to what extent is statistical learning itself affected by ex-
perience? There are two related questions here. The first is whether the
mechanisms underlying statistical learning can be improved to increase
the effectiveness of learning. The second concerns the issue of “re-
wiring”: to what extent can knowledge of statistical regularities be
modified or even unlearned in order to assimilate new regularities? In
regards to the first question, there is some initial work to suggest that
statistical learning may be modifiable to some degree (Onnis et al.,
2015; Smith et al., 2015). Likewise, in regards to the second question, it
appears possible that knowledge of statistical regularities can be re-
wired, allowing for the learning of new regularities (Szegedi-Hallgató
et al., 2017). If it is possible to improve learning and/or rewire one’s
knowledge of what has been learned, then this represents an un-
precedented opportunity to use targeted intervention or controlled
manipulation of environmental factors to help promote statistical
learning across a range of language and learning disorders (Plante and
Gómez, 2018). Similarly, it is yet unknown whether methods of im-
proving statistical learning could have an impact across developmental,
language, and educational outcomes even in typical developing in-
dividuals.

Statistical learning is a robust learning mechanism that provides
adaptability, flexibility, and improved behavioral functioning for or-
ganisms that can capitalize on the structure inherent in the world. The
quest for a unified theory of statistical learning requires continued re-
search to help understand how learning proceeds for different types of
input, what cognitive and neural systems undergird learning, and how
it emerges across species and within individuals across developmental
time. Future research that integrates findings across a number of key
areas, as embodied by the ten core principles outlined here, will help us
better understand how the brain learns environmental structure.
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