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Abstract
Humans and nonhuman primates can learn about the organization of stimuli in the environment using implicit sequential 
pattern learning capabilities. However, most previous artificial grammar learning studies with nonhuman primates have 
involved relatively simple grammars and short input sequences. The goal in the current experiments was to assess the learn-
ing capabilities of monkeys on an artificial grammar-learning task that was more complex than most others previously used 
with nonhumans. Three experiments were conducted using a joystick-based, symmetrical-response serial reaction time task 
in which two monkeys were exposed to grammar-generated sequences at sequence lengths of four in Experiment 1, six in 
Experiment 2, and eight in Experiment 3. Over time, the monkeys came to respond faster to the sequences generated from the 
artificial grammar compared to random versions. In a subsequent generalization phase, subjects generalized their knowledge 
to novel sequences, responding significantly faster to novel instances of sequences produced using the familiar grammar com-
pared to those constructed using an unfamiliar grammar. These results reveal that rhesus monkeys can learn and generalize 
the statistical structure inherent in an artificial grammar that is as complex as some used with humans, for sequences up to 
eight items long. These findings are discussed in relation to whether or not rhesus macaques and other primate species pos-
sess implicit sequence learning abilities that are similar to those that humans draw upon to learn natural language grammar.
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Introduction

One of the impressive characteristics of human language 
acquisition is the degree to which structure is implicitly 
abstracted through experience with the environment. There 
is now good reason to believe that at least some of language 
learning in humans is accomplished by the more general 
ability to implicitly process statistical input patterns (e.g., 
Cleeremans et al. 1998; Conway et al. 2010; Kidd 2012; 

Kidd and Arciuli 2015; Misyak and Christiansen 2012; Per-
ruchet and Pacton 2006; Reber 1967; Redington and Chater 
1997; Saffran 2003; Saffran et al. 1996). Studies with human 
participants have indicated that this kind of sequence learn-
ing is also used for nonlanguage domains, such as the learn-
ing of visual or visuo-motor patterns (e.g., Cleeremans and 
McClelland 1991; Fiser and Aslin 2001, 2002; Hunt and 
Aslin 2001; Nissen and Bullemer 1987). This general sensi-
tivity to structured patterns, regardless of domain or sensory 
modality, has also been revealed in other animal species (see 
Santolin and Saffran 2017).

For instance, it has been demonstrated that pigeons 
(Columba livia) can learn artificial grammars produced 
using colored letters (Herbranson and Shimp 2008) and 
that they can abstract these complex regularities to general-
ize what they learned to novel stimuli strings. Bengalese 
finches (Lonchura striata var. domestica), which use syn-
tactically complex songs to communicate, have the ability to 
use artificial grammar rules to discriminate songs (Abe and 
Watanabe 2011). Additionally, after learning the underlying 
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grammatical rules of the synthesized syllable strings, these 
birds then discriminated novel strings that were produced 
using the learned rules.

Most recently, Spierings and ten Cate (2016) reported that 
budgerigars and zebra finches differed in how they general-
ized what they learned about triplets of song elements. That 
paper was a first attempt at investigating artificial grammar 
learning in budgerigars, a parrot species that have an open-
ended learning capacity with more vocal variation than zebra 
finches. Although both species were able to learn the under-
lying structure of the sound strings, the zebra finches gener-
alized using positional information, while the budgerigars 
revealed that they could abstract the rules they learned and 
apply them to novel stimuli.

Nonhuman primates also have demonstrated sensitivity 
to structured patterns (e.g., Attaheri et al. 2015; Conway 
and Christiansen 2001; Endress et al. 2010; Hauser et al. 
2001; Heimbauer et al. 2012; Locurto et al. 2009, 2010, 
2015; Newport et al. 2004; Ravignani et al. 2013; Saffran 
et al. 2008; Sonnweber et al. 2015; Stobbe et al. 2012; Ter-
race et al. 2003; Wilson et al. 2013—see Milne et al. 2018, 
for a review). However, one important and still unanswered 
question is the extent to which nonhumans demonstrate the 
capability for learning the underlying structure of complex 
grammars equivalent to human learning. One way to quan-
tify complexity in artificial grammars is to recognize the dis-
tinction between phrase-structure grammars and finite-state 
grammars (Chomsky 1956, 1959). A phrase-structure gram-
mar (or the equivalent term, context-free grammar) entails 
center embedding of units that form nested dependencies; 
this type of rule system is more complex than a finite-state 
grammar, which consists of local organizational principles 
only, with statistical regularities limited to neighboring units 
or connected “states” (for an introduction to the Chomsky 
hierarchy, see Fitch and Friederici 2012; Fitch et al. 2012; 
Jäger and Rogers 2012). Although some of the initial evi-
dence appeared to suggest that nonhuman primates were 
incapable of learning the more computationally demanding, 
phrase-structure grammar (Fitch and Hauser 2004), more 
recent research seems to suggest they may have this capabil-
ity after all (Rey et al. 2012; Stobbe et al. 2012).

Importantly, though, it is unclear whether and how natural 
language maps onto any level of the Chomsky hierarchy 
(see Christiansen and Chater 2016, for discussion). Indeed, 
it has been suggested that human language use may be best 
characterized by relatively simple computational processes 
that may be more akin to finite-state systems than their more 
complex context-free counterparts (e.g., Christiansen and 
Chater 2015; Frank and Bod 2011; Karlsson 2010; Petersson 
2005). From this perspective, it makes sense to focus more 
closely on a detailed study of finite-state sequence learn-
ing abilities in nonhuman primates as a possible precursor 
for human language learning (see also Petkov and Wilson 

2012). Unfortunately, across different studies, different types 
of artificial grammar learning tasks have been used that vary 
on a number of different factors (e.g., grammar complex-
ity, stimulus modality, response demands, number of train-
ing sessions, number of training exemplars, and sequence 
length). If different studies use different species using dis-
similar learning tasks, and species differences are observed, 
it is difficult to know the extent to which the differences 
are due to a discrepancy in the cognitive capabilities of the 
different species versus differences in the demands of the 
task itself. What is needed is a way to quantify complexity 
in artificial grammar learning and then to probe the limits 
of nonhuman learning by testing their learning for highly 
complex structures.

Therefore, to better understand the role of grammar com-
plexity (and the related variable sequence length) in arti-
ficial grammar learning by nonhuman primates, the goal 
of the current study was to examine learning by rhesus 
macaques (Macaca mulatta) using a finite-state grammar 
that was more complex than most others previously used 
with nonhumans. The grammar task consisted of exposure 
to statistical-based visual sequences followed by a test of 
generalization to novel sequences produced using the same 
statistical patterns. We used Wilson et al.’s (2013) complex-
ity metric to design a grammar that was more complex than 
nearly all others used in previous nonhuman studies, on a par 
with those used with humans. Furthermore, because most 
nonhuman animal studies have used sequences that are much 
shorter in length than those typically used with humans, a 
second goal was to vary the length of sequences systemati-
cally to examine the effect on learning. In a previous study 
(Heimbauer et al. 2012), the same animals as in the current 
study had learned a fixed visual sequence similar in length to 
those humans are tested with, but the monkeys had not been 
tested on their ability to learn and generalize grammar-like 
statistical patterns. Before describing the current study in 
detail, we first discuss the notion of grammar complexity in 
artificial grammar learning.

Grammar complexity in artificial grammar learning

Within the level of finite-state grammars, there can be a 
wide range of structural complexity, from the use of fixed 
repeating sequences or chains to more complex and vari-
able probabilistic patterns that are less predictable (Conway 
and Christiansen 2001). Wilson et al. (2013) developed a 
metric to quantify the complexity of different types of finite-
state grammars (for other complexity metrics, see Pothos 
2010; Schiff and Katan 2014). Wilson et al.’s (2013) metric 
assessed the complexity of an artificial grammar along two 
dimensions: (1) the number of unique stimulus classes or 
elements that contribute to the grammar structure and (2) 
the degree of predictability or determinism in the structure. 
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The value for the second dimension is calculated by the fol-
lowing equation:

where LP is linear predictability, C is the number of unique 
stimulus elements or structural classes, and T is the number 
of unique transitions between stimulus elements. The value 
for the denominator (T) is obtained by creating a list of all of 
the possible transitions between stimulus elements (Petkov 
and Wilson, personal communication, May 23, 2016), which 
also includes transitions between elements within the gram-
mar as well as involving the start and end states. In this for-
mula, a linear predictability of 1.0 represents perfect deter-
minism such as a fixed sequence that is perfectly predictable, 
whereas lower values represent increasingly higher levels of 
unpredictability and therefore a higher level of complexity 
(see Fig. 1 for examples).

To further illustrate these parameters, consider Reber’s 
(1967) classic study. In this grammar, there are five different 
stimulus elements (V, P, T, X, and S) and 17 unique transi-
tions in the grammar (see Table 1). The linear predictability 
of this grammar is calculated as (5 + 1)/17 = 0.3529. In 
Table 1, we have reproduced Wilson et al.’s (2013) calcu-
lations of other human and nonhuman artificial grammar 
learning studies, updated to include a number of new stud-
ies not listed by Wilson et al., and focusing on recent stud-
ies with nonhuman primates using finite-state grammars. In 
addition to the two complexity parameters, we also included 
additional information including the species tested, the 
stimulus modality, whether the grammar allows repetitions, 
and the lengths of the training exemplars. The studies are 
listed in increasing complexity based on the linear predict-
ability metric. We included all of the finite-state grammar 
learning studies we know of that have been conducted with 
nonhuman primates. We also included a sample of human 
finite-state grammar learning studies for comparison, as well 
as details for the three experiments reported in the current 
manuscript.

As depicted in Table 1, out of the seven studies involv-
ing finite-state grammar learning by nonhuman primates, 
six of them (Attaheri et al. 2015; Endress et al. 2010; 
Heimbauer et al. 2012; Locurto et al. 2013; Saffran et al. 
2008; Wilson et al. 2013) incorporated grammars with lin-
ear predictability values of 0.5 or higher, which are con-
siderably simpler than most finite-state grammars used in 
human studies, for instance, by Gomez and Gerken (1999), 
Conway et al. (2010), Reber (1967), Knowlton and Squire 
(1996), and Jamieson and Mewhort (2005). Finite-state 
grammars used in human studies typically have linear pre-
dictability values below 0.4, with the more complex ones 
being lower than 0.3. The only study we know of to use 
a grammar of such complexity with nonhuman primates 
was Locurto et al. (2015), who demonstrated learning 

LP = (C + 1)∕T

of a finite-state grammar with cotton-top tamarins using 
visual-motor sequences. However, one limitation with this 
particular grammar is that it allows stimulus repetitions in 
the generated sequences. Because repetitions are known 
to be highly salient to learners (Endress et al. 2007), it is 
likely that this simplified the learning situation. Thus, it is 
currently unknown to what extent nonhuman primates are 
able to demonstrate learning of a complex grammar that 
does not contain stimulus repetitions.

The grammar used in the present study (loosely based 
on Jamieson and Mewhort 2005) has certain advantages 
over other artificial grammars that are commonly used. 
First, unlike most other grammars, including the classic 
Reber’s (1967) grammar, there are no positional con-
straints. That is, each element of the grammar can occur 
at any position with equal frequency, eliminating the pos-
sibility that specific elements would only occur at the 
beginning or the end of sequences. Second, there are also 
no constraints on sequence length. To prevent sequence 
length from becoming a confound and to allow us to 
systematically examine learning for sequences of vary-
ing lengths, a large set of stimuli can be generated at a 
particular length. This grammar has the added benefit of 
being relatively complex in terms of linear predictability 
(0.3125), on a par with some of the more complex gram-
mars used in human studies and as complex as the Locurto 
et al.’s (2015) study. However, unlike Locurto et al., the 
grammar in the current study does not allow stimulus 
repetitions. This grammar also is able to produce a large 
set of sequences, much larger than that used in any other 
nonhuman artificial grammar learning study that we know 
of. At sequence length of 8, the grammar can produce 
512 sequences, creating a relatively formidable learning 
challenge and making it less likely—though not impossi-
ble—that any observed learning effects are due to memo-
rizing individual sequences. In comparison, the studies 
by Saffran et al. (2008), Wilson et al. (2013), Attaheri 
et al. (2015), and Endress et al. (2010) used grammars 
that could only produce a small set of training exemplars 
(12 or less).

To summarize, the aim of the current study was to 
assess the learning abilities of rhesus macaques using an 
artificial grammar that equaled the complexity of most of 
the grammars used with humans. Furthermore, the previ-
ous studies with nonhumans have generally been limited 
to relatively short (three- to six-item) input sequences. The 
current experiments were conducted to test nonhuman pri-
mates for grammar-like learning and generalization abili-
ties, using a contingency-based reward schedule and rela-
tively long (eight-item) sequences. An additional research 
question concerned the extent to which these monkeys 
would display stimulus positional learning effects within 
the sequences.
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Fig. 1  Examples of artificial grammars that differ in linear predictability values are shown. The grammar at the bottom is the one used in the current study
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Current study

In a previous experiment, we reported that rhesus macaques 
tracked a fixed, visual, eight-item sequence and responded 
faster at all positions as compared to random sequences 
using a joystick-based, symmetrical-response serial reac-
tion time (SR-SRT) task (Heimbauer et al. 2012). In this 
task, a colored circle could appear in one of eight locations 

arranged in a circle, equidistant from the starting point to 
allow for unbiased response measurement. We now tested 
two of these same monkeys using this SR-SRT paradigm 
for the ability to learn eight-item sequences generated from 
a finite-state grammar and to generalize this knowledge to 
novel sequences produced from the same grammar. Specifi-
cally, we used an artificial grammar similar in design to that 
used by Jamieson and Mewhort (2005), which builds linearly 

Table 1  Summary of parameters used in human and nonhuman artificial grammar learning studies

We have elected to omit from the table a number of artificial grammar learning studies with nonhumans that have involved structural relation-
ships between just two stimulus classes (e.g., A and B; Fitch and Hauser 2004; Hauser and Glynn 2009; Neiworth 2013; Ravignani et al. 2013; 
Stobbe et al. 2012; Sonnweber et al. 2015). According to Wilson et al.’s (2013) calculations, these types of grammars are actually quite simple, 
with only two stimulus classes and linear predictability values that range between 0.6 and 0.8 (see Wilson et al. 2013 for further discussion)

Study Species Modality # Unique stimulus 
elements or 
classes

# Unique 
transitions

Repetitions Sequence lengths 
tested

Linear predict-
ability

Locurto et al. 
(2013), Exp. 1 
and 2

Cotton-top tama-
rins

Visual (spatial 
positions)

5 6 N 5 (continuous 
sequence)

1

Saffran et al. 
(2008), Exp. 3 
(“P-language”)

Cotton-top tama-
rins

Auditory (non-
words)

5 11 N 3–6 0.5454

Wilson et al. 
(2013)

Rhesus macaques 
and common 
marmosets

Auditory (non-
words)

5 11 N 3–6 0.5454

Attaheri et al. 
(2015)

Rhesus macaques Auditory (non-
words)

5 11 N 3–6 0.5454

Saffran et al. 
(2008) (Exp. 3 
(“NP-language”)

Cotton-top tama-
rins

Auditory (non-
words)

5 11 N 3–5 0.5454

Endress et al. 
(2010), Exp. 1

Chimpanzees (grunts, screams) 3 8 Y 6 0.5

Heimbauer et al. 
(2012), Exp. 2

Rhesus macaques Visual (spatial 
positions)

4 10 N 5–8 (continuous 
sequence)

0.5 (for length 8)

Gomez and Ger-
ken (1999)

Humans (infants) Auditory (non-
words)

5 16 Y 3–6 0.375

Conway et al. 
(2010), Exp. 1

Humans (adults) Visual (spatial/
color locations)

4 14 N 3–8 0.375

Reber (1967), 
Exp. 1

Humans (adults) Visual (letter 
strings)

5 17 Y 6–8 0.3529

Knowlton and 
Squire (1996), 
Grammar A

Humans (adults) Visual (letter 
strings)

4 15 Y 3–6 0.3333

Locurto et al. 
(2015)

Cotton-top tama-
rins and pigeons

Visual (spatial 
positions)

4 16 Y Continuous 
sequence

0.3125

Current Study, 
Exp. 1

Rhesus macaques Visual (spatial 
positions)

4 16 N 4 0.3125

Current Study, 
Exp. 2

Rhesus macaques Visual (spatial 
positions)

4 16 N 6 0.3125

Current Study, 
Exp. 3

Rhesus macaques Visual (spatial 
positions)

4 16 N 8 0.3125

Jamieson and 
Mewhort (2005), 
Exp. 1 and 2

Humans (adults) Visual (color 
sequences)

6 24 N 8 0.2917

Conway et al. 
(2010), Exp. 2

Humans (adults) Auditory (non-
words)

4 19 Y 4–8 0.263
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in such a way that any subsequent item in the sequence is at 
least partly predictable based on the current item. Each of 
the four stimulus elements could be followed by one of two 
other possible elements. In order to test for broad sensitivity 
to this grammar, a sufficiently large number of sequences 
were used to ensure that the participants were not simply 
learning individual sequences by rote, but showing sensitiv-
ity to the underlying statistical pattern that all the sequences 
had in common.

When a monkey was successful at the discrimination task, 
it was tested for generalization to novel sequences conform-
ing to the same statistical pattern (i.e., generated by the 
grammar). In the first experiment, we used sequences with 
a length of four (L4). In the second experiment, we used 
sequences of L6, and in the third experiment, L8. Increasing 
the sequence lengths over experiments not only increased 
the difficulty for tracking each individual sequence, but 
also exponentially increased the number of sequences that 
could be presented in each phase of the experiment, thus 
presenting a formidable learning challenge. L4 represented 
the shortest length at which testing could occur with this 
particular grammar, producing 32 possible combinations. 
L6 created 128 possible sequences, and L8 produced 512 
sequences. The goal was therefore to test the monkeys at 
each length, for evidence of grammar learning and then 
assessing whether generalization was displayed in each 
case. Generalization involved comparing performance laten-
cies between the learned sequences (“Familiar”) to new 
sequences generated from the same artificial grammar used 
in the learning phase (“Novel-Familiar”) and to sequences 
generated by a different grammar that a monkey was not 
previously exposed to (“Unfamiliar”) but that had the same 
items in it. Table 2 displays the number of test sequences 
used in each of the three experiments.

In addition, comparison of performance at each position 
between statistically constrained and random sequences was 
also examined to ascertain what the monkeys were learn-
ing about element positions. It was not expected that any 
learning would be displayed at Position 1 (apart from motor-
related practice effects) because the first circle of a sequence 
could occur at any location; however, if an animal displayed 
successful learning of the transitional probabilities of the 

grammar, learning at each subsequent position (Positions 2 
through 8) should be observed.

General method

Testing used the SR-SRT task (Heimbauer et al. 2012). In 
this paradigm, subjects used a joystick to track colored cir-
cles that appeared one at a time in fixed locations arranged 
in a circular pattern on a computer screen.

Subjects

Subjects were two adult male rhesus monkeys, Obi and 
Luke, housed at the Language Research Center (LRC) at 
Georgia State University. Obi was five years old and Luke 
was nine years old when the experiments began. The mon-
keys were experienced in using a joystick to respond to stim-
uli presented on a computer monitor, as well as in using the 
SR-SRT task. They were neither food- nor water-deprived 
and had continuous access to a rotating schedule of com-
puterized tasks performed for food reward. Each task was 
presented for blocks of time ranging from four to six hours. 
The animals participated in the SR-SRT task approximately 
three to four sessions per week, completing varying numbers 
of sequence trials depending on their motivation level and 
the session duration.

Apparatus

Subjects were tested individually in their home cages using 
the LRC Computerized Test System (Richardson et al. 1990; 
Washburn and Rumbaugh 1992), which included a desktop 
PC and a 17-in. (43.2 cm) super-VGA monitor positioned 
approximately 24 cm from the home cage behind a transpar-
ent Lexan panel. Each monkey had access to its own testing 
station and controlled a cursor on the monitor using a verti-
cally mounted joystick protruding into the cage. The joystick 
was centered on the screen horizontally and located roughly 
level with the bottom of the monitor. Custom software writ-
ten in Visual Basic 6.0 (Microsoft Corp., Redmond, WA) 
was used to control sequence trial presentation and collect 
data, and task performance was tallied using custom scripts. 
Statistical analyses were conducted using the online statisti-
cal calculators VassarStats (http://facul ty.vassa r.edu/lowry /
Vassa rStat s.html) and GraphPad QuickCalcs (http://www.
Graph pad.com/quick calcs /index .cfm).

Procedure

Monkeys performed the SRT task by moving the joy-
stick in the direction of each circle of a sequence as it 
appeared on the computer monitor. Each circle occupied a 

Table 2  Number of test sequences for Experiments 1 through 3

Familiar Novel-Familiar Unfamiliar

Exp. 1, learning 20
Exp. 1, generalization 20 4 4
Exp. 2, learning 96
Exp. 2, generalization 96 16 16
Exp. 3, learning 384
Exp. 3, generalization 384 64 64

http://faculty.vassar.edu/lowry/VassarStats.html
http://faculty.vassar.edu/lowry/VassarStats.html
http://www.Graphpad.com/quickcalcs/index.cfm
http://www.Graphpad.com/quickcalcs/index.cfm
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relative “Location” on the screen and a “Position” within 
the sequence. As shown in Fig. 2, four possible screen loca-
tions were used, referred to as 1, 2, 3, and 4. Positions var-
ied from 1 to 8, depending on sequence length. Both the 
initial learning phase and subsequent generalization phase 
included statistically constrained (grammar-based) and ran-
domized sequences. The constrained sequences were consid-
ered the Familiar sequences, and the randomized sequences 
were termed Control and used as comparison stimuli for 
the grammar-based versions. In the generalization phase, 
two additional sequence types, as described earlier, were 
presented: Novel-Familiar and Unfamiliar.

To begin a trial, a monkey used its joystick to move a vis-
ible cursor into contact with a start box icon in the middle of 
the screen. As shown in Fig. 2, a 1.5-in. blue circle appeared 
in one of four possible locations, arranged in a circular pat-
tern 14.2 cm in diameter. The monkey moved the joystick in 
the direction of the stimulus, with any detectable deflection 
registered as a response. Deflection had to fall within 22.5 
degrees of the directional heading to the circle, causing it to 
disappear. Both the cursor and the starting point for the next 
joystick deflection then reset to the center.

During a sequence, each correct deflection caused a new 
stimulus to appear in a different location after a 1-s inter-
stimulus interval, until the series was complete. Inaccurate 
deflection or failure to respond to a stimulus within 3 s trig-
gered a 1-s time-out, and the screen went blank. After the 
time-out, a new sequence began. All types of completed 
sequences throughout the learning and generalization phases 
triggered delivery of a 97-mg food pellet, an upswept tone, 
and a 1-s inter-trial interval. Data collected for each stimulus 

presented included sequence type, screen location, position 
within the sequence, and response latency in ms. Session 
tallies included sequences completed for each sequence type 
and median latencies on completed sequences, tabulated by 
Location and Position.

Only sessions in which a subject initiated at least 100 
sequences and completed at least 80% of these sequences 
were included in analyses. A monkey moved from the learn-
ing to the generalization phase in each experiment only when 
he reached this performance criterion for at least three of 
four consecutive sessions, while also responding statistically 
faster to Familiar versus Control sequences in each case. 
Faster responding was required both overall and for at least 
two of the individual positions within the sequence, tabu-
lated separately across the sessions for each sequence type. 
The monkeys were allowed to continue to practice on vari-
ous sequences for varying lengths of time after criterion per-
formance was met between the learning and generalization 
phases. The monkeys were also allowed to continue practic-
ing on generalization sessions for 40 to 50 sessions between 
Experiments 1 and 2 and between Experiments 2 and 3 to 
allow for adequate learning of the additional sequences in 
the generalization phases.

The two grammars used are illustrated in Fig. 3 (both 
have the same underlying structure as the grammar presented 
at the bottom of Fig. 1). One was assigned to each monkey 
for the three experiments, and both were based on a given 
location being followed with equal probability by one of 
two other designated locations. A location could not follow 
itself, but could potentially appear in any position within 
the sequence. Control sequences were pseudo-randomly 
determined, with the constraint that a location could not fol-
low itself. Learning sessions included 90% grammar-based 

Fig. 2  The layout of the circle locations on the screen and corre-
sponding joystick movements to track each circle as it appears. Num-
bers shown in parentheses mark location numbering only and did not 
appear when circles were displayed

Fig. 3  Schematic illustrations of the grammars used. Each circle loca-
tion could be followed by either of two others as shown, each with 
mean occurrence of 50%. Note that if the end state is included in 
the diagram, then conceivably the transition probabilities are 33%, 
not 50%. However, for each experiment, length was held constant. 
This means that for all but the very last item in each sequence, the 
monkeys were exposed to transition probabilities of 50%, and thus, 
we believe this is the more accurate value for depicting the statistical 
probabilities governing transitions within each sequence
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sequences and 10% control sequences. Generalization ses-
sions included 70% Familiar, 10% Novel-Familiar, 10% 
Unfamiliar, and 10% Control sequences. In all sessions, 
sequences were presented in one of ten different, predeter-
mined, randomized orders. The order used was randomly 
selected on a session-by-session basis, but the same order 
was never used in two consecutive sessions.

Data analysis

Latencies were compared across conditions within each 
session, both overall and separately by position using one-
tailed, unpaired t tests, due to the expectation that there 
would be a directional difference. In the learning phase, 
comparisons were between Familiar and Control sequences 
to analyze for overall learning of the Familiar sequences. 
After overall learning was demonstrated, positional perfor-
mance was analyzed based on mean positional performance 
for that session and the following five sessions to look for 
consistency over subsequent sessions. Generalization ses-
sions were analyzed by conducting repeated-measures 
ANOVAs and Tukey’s HSD for all possible comparisons 
of the mean RTs for sequences of the four generalization 
session sequence types: Control, Familiar, Novel-Familiar, 
and Unfamiliar. The mean RTs for sequence types included 
Position 1 performance for consistency with our prior work 
(Heimbauer et al. 2012). To ensure that Position 1 responses 
were not biasing the overall results, we assessed the RTs at 
only Position 1 across sequence types to ensure that there 
were no statistical differences.

Evidence of sensitivity to grammatical statistical struc-
ture was deemed to be shown by similar performance on 
the Familiar and Novel-Familiar sequences, as well as con-
tinued faster responding to Familiar grammar-based than 
randomized Control sequences, Unfamiliar sequences, or 
both. During the first generalization session, it would be 
expected that Familiar and Novel-Familiar sequences would 
show similar reaction times, as would Unfamiliar and Con-
trol sequences. Evidence for generalization was looked for 
in the first generalization session that contained at least 50 
completed sequences of each type.

Experiment 1

The first experiment was designed to investigate whether 
monkeys responding to visually based sequences gener-
ated by a common, underlying statistical-based grammar 
would show sensitivity (i.e., learning and generalization) 
to the patterns of L4 sequences. A sequence length of four 
was used as the shortest testable sequence produced by the 
simple grammars shown in Fig. 3. The large majority of the 
resulting sequences were used as Familiar stimuli, thereby 

providing the broadest possible exposure to their common 
structure. While constrained by the relatively small number 
of sequences available, the rationale was to emphasize learn-
ing about the grammar involved rather than the sequences 
themselves. The consequence was, of course, that only a few 
were left for testing that learning.

Procedure

Each of the two grammars used produced 32 possible L4 
sequences (see Table 2). Four of these possible sequences 
were identical for both grammars, namely for Locations 
1313, 2424, 3131, and 4242. These were discarded, leav-
ing 28 usable sequences for each grammar. Twenty of these 
were used as Familiar stimuli and four became Familiar-
Novel stimuli. The last four were held back so the experi-
ment could, if necessary, be revised and repeated without 
extensive retraining. Sequences were assigned to one role 
or the other on a randomized basis. Each monkey’s Novel-
Familiar stimuli were used as the other subject’s Unfamiliar 
sequences.

Results

During learning, two sessions from each monkey did not 
meet overall performance criteria and were not included in 
analyses. Over the analyzed sessions, Obi and Luke com-
pleted an average of over 750 and 1100 sequence trials, 
respectively. During session 43 (after a total of 28,956 gram-
mar sequence trials), Obi demonstrated significantly faster, 
overall responding to Familiar than to Control sequences 
(P < 0.05), in addition to performing significantly faster 
at individual Positions 2, 3, and 4 of Familiar versus Con-
trol sequences during sessions 43 through 48 (Table 3 and 
Fig. 4a). Luke showed significantly faster overall respond-
ing to Familiar versus Control sequences (P < 0.01) during 
session 48 (after a total of 50,205 grammar sequence trials), 
and was statistically faster at Positions 2, 3, and 4 for Famil-
iar compared to Control sequence positions during sessions 
48 through 53 (Table 4 and Fig. 4b). As expected, learning 
was not displayed at Position 1 because the first circle of a 
sequence could occur at any location.  

When Novel-Familiar and Unfamiliar sequences were 
introduced in the generalization phase, ANOVA results 
for Obi revealed an overall effect of sequence type 
[F(3,177) = 3.31, P < 0.05] with significantly faster reac-
tion times to both Novel-Familiar and Familiar sequences 
versus Control sequences (P < 0.05) during his first session 
after responding to 60 sequences of each type (see Fig. 5a). 
Luke’s performance was comparable in his first generaliza-
tion session for 60 sequences of each type, demonstrated 
by an overall sequence-type effect [F(3,177)  =  4.25, 
P < 0.01], with significantly faster performance on both 
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Novel-Familiar and Familiar sequences versus Unfamil-
iar sequences (P < 0.05) as shown in Fig. 5b. Luke also 
demonstrated significantly faster performance on Control 
versus Unfamiliar sequences (P < 0.01). Neither monkey 
showed a significant difference in performance between 
the Familiar and Novel-Familiar sequences.

Discussion

The results showed that both monkeys were sensitive to the 
underlying statistical patterns of the visual sequences they 
were exposed to. The learning phase was long for both sub-
jects, with the first evidence of faster overall performance 

Table 3  Obi’s sequence position 
performance during learning for 
each experiment

Sessions included in the analysis are noted in parentheses

Exp. 1 (43 through 48) Exp. 2 (34 through 39) Exp. 3 (5 through 10)

Position 1 t(10) = − 0.47, P = 0.33 t(10) = 1.01, P = 0.17 t(10) = 0.59, P = 0.28
Position 2 t(10) = 2.36, P < 0.05 t(10) = 5.76, P < 0.0001 t(10) = 3.0, P < 0.01
Position 3 t(10) = 3.56, P < 0.01 t(10) = 6.36, P < 0.0001 t(6.09) = 2.97, P < 0.01
Position 4 t(10) = 4.14, P < 0.001 t(10) = 10.13, P < 0.0001 t(10) = 4.84, P < 0.001
Position 5 t(10) = 7.22, P < 0.0001 t(10) = 3.28, P < 0.01
Position 6 t(10) = 2.8, P < 0.05 t(10) = 2.7, P < 0.01
Position 7 t(10) = 3.18, P < 0.01
Position 8 t(10) = 2.84, P < 0.01

Fig. 4  Experiment 1 Learning results for Obi (a) and Luke (b); mean RTs for familiar versus control trials at each position (*P  <  0.05; 
**P < 0.01; ***P < 0.001; and ****P < 0.0001)

Table 4  Luke’s sequence 
position performance during 
learning for each experiment

Sessions included in the analysis are noted in parentheses

Exp. 1 (48 through 53) Exp. 2 (32 through 37) Exp. 3 (38 through 43)

Position 1 t(10) = 0.51, P = 0.31 t(10) = 0.29, P = 0.39 t(10) = 0.05, P = 0.48
Position 2 t(10) = 6.55, P < 0.0001 t(10) = 0.89, P = 0.20 t(10) = 0.14, P = 0.45
Position 3 t(10) = 4.46, P < 0.001 t(10) = 1.6, P = 0.08 t(10) = 1.09, P = 0.15
Position 4 t(10) = 10.38, P < 0.0001 t(10) = 1.18, P = 0.13 t(10) = 1.06, P = 0.16
Position 5 t(10) = 1.9, P < 0.05 t(10) = 2.15, P < 0.05
Position 6 t(10) = 3.42, P < 0.01 t(10) = 0.25, P = 0.40
Position 7 t(10) = 0.67, P = 0.26
Position 8 t(10) = 1.54, P = 0.08
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in the Familiar versus Control conditions emerging after 
43 weeks for Obi and 48 weeks for Luke. The combination 
of faster performance overall and at individual Positions 2, 
3, and 4 on Familiar versus Control sequences, however, 
demonstrates that the monkeys had formed expectations 
about sequential relationships among the items. Because the 
two monkeys were being exposed to differently constructed 
grammars, it is unlikely that the particular sequences 
involved were themselves playing a critical role.

Based on the learning phase of the experiment only, 
the results might reflect learning about the particular 20 
sequences being used, rather than their common, underlying 
structure. The results from the generalization phase argue 
against this interpretation, providing evidence of immediate 
comparable performance with novel sequences drawn from 
each subject’s familiar grammar. Although Obi was signifi-
cantly faster at Novel-Familiar and Familiar sequences when 
compared to Control sequences, Luke was significantly 
faster when responding to Novel-Familiar and Familiar 
sequences as compared to the Unfamiliar sequences. How-
ever, neither monkey revealed a difference in performance 
between the Familiar and Novel-Familiar sequences, sup-
porting the interpretation of generalization of the statistical 
patterns.

Experiment 2

Testing with L4 sequences provided evidence that rhesus 
monkeys can show sensitivity to the statistical structure 
underlying short visual sequences, including the ability to 
generalize to novel sequences conforming to the same sta-
tistical patterns. However, only 20 different sequences were 
used during learning, and generalization included only four 
Novel-Familiar exemplars. The design and outcomes argue 
against the possibility of rote learning alone accounting for 

the findings, but the small number of sequences involved 
weakens the conclusion. The next step was therefore to test 
with increased sequence length and a greater total number 
of possible sequences. Testing at L6 allowed a total of 128 
sequences for each, although again with four unusable, 
overlapping outcomes (i.e., 131313, 242424, 313131, and 
424242).

Procedure

Learning and generalization phases were conducted as in 
Experiment 1. The same two grammars were used, but now 
to generate L6 sequences. A total of 96 sequences were used 
in learning, the four overlapping sequences were discarded, 
and 12 sequences were held back in case of later need. 
The remaining 16 sequences were used in generalization 
testing. Assignment of sequences to condition was again 
randomized.

Results

As mentioned in the “General method” section, the mon-
keys were allowed to continue practicing on generaliza-
tion sessions between experiments to allow for adequate 
learning of the additional sequences in the generalization 
phases. To analyze for evidence of sustained learning in 
these instances, we conducted independent t tests com-
paring mean RTs for each of the positions in Familiar 
sequences in the first generalization session of an experi-
ment to the same position mean RTs in the first session 
of their learning phase at the next sequence length. When 
transitioning from Experiment 1 to Experiment 2, Obi 
responded significantly faster at all positions (1 through 
4, P < 0.01) in Experiment 2 than he had when meet-
ing learning criteria in Experiment 1. Luke responded the 
same at Positions 1, 3, and 4 (P = ns), and significantly 

Fig. 5  Experiment 1 Generalization (first session) results for Obi (a) and Luke (b); *P < 0.05; **P < 0.01. Error bars represent the standard 
deviation of the means over the analyzed session
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faster at Position 2 (P < 0.01) in Familiar sequences in 
Experiment 2 as when meeting criteria in Experiment 1.

When analyzing learning in Experiment 2, only one ses-
sion (from Obi) was excluded from analysis due to fail-
ure to meet session criteria, and both monkeys completed 
an average of over 1000 sequences in each session. Both 
monkeys responded statistically faster to Familiar than to 
Control sequences: Obi during session 34 (after 29,056 
grammar sequence trials), and Luke during session 32 
(after 31,057 grammar sequence trials), both at P < 0.01. 
At that point in testing, Obi was responding significantly 
faster at Positions 2 through 6 for Familiar versus Con-
trol sequences during sessions 34 through 39 (Table 3 and 
Fig. 6a), while Luke showed faster responding at Posi-
tions 5 and 6 during sessions 32 through 37 (Table 4 and 
Fig. 6b), with neither monkey revealing a performance 
difference at Position 1.

Results from generalization testing are shown in Fig. 7a 
(for Obi) and 7b (for Luke). In this phase, an ANOVA 
revealed an overall effect of sequence type for Obi after 80 
sequences of each type in his first session, F(3,237) = 5.31, 
P < 0.01. In this session, he was significantly faster respond-
ing to both Novel-Familiar and Familiar as compared to 
Unfamiliar sequences (P < 0.05 and P < 0.01, respec-
tively), but not as compared to Control sequences. Obi also 
responded significantly faster responding to Familiar versus 
Control sequences. Similarly to Obi, Luke demonstrated an 
overall effect between sequence types in his first session 
after 80 sequences of each type, F(237) = 6.21, P < 0.001. 
Similar to his performance in Experiment 1, Luke was sig-
nificantly faster at Novel-Familiar and Familiar sequences as 
compared to Unfamiliar sequences (P < 0.01 and P < 0.05, 
respectively) and now as compared to Control sequences as 
well (P < 0.01 and P < 0.05, respectively). Neither monkey 

Fig. 6  Experiment 2 Learning results for Obi (a) and Luke (b); mean RTs for familiar versus control trials at each position (*P  <  0.05; 
**P < 0.01; and ****P < 0.0001)

Fig. 7  Experiment 2 Generalization (first session) results for Obi (a) and Luke (b); *P < 0.05 and **P < 0.01. Error bars represent the standard 
deviation of the means over the analyzed session
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demonstrated a significant performance difference between 
Familiar and Novel-Familiar sequences.

Discussion

After demonstrating generalization at SL4 in Experiment 1, 
practicing either sustained or improved training performance 
for both monkeys when beginning Experiment 2. However, 
the improvement in RT on Position 1 after additional prac-
tice was most likely a basic task-related motor improvement 
because the first location in a sequence is chosen at random. 
Similar task-related improvements have also been observed 
in human SRT tasks (e.g., Misyak and Christiansen 2010).

In this experiment, the results with L6 sequences pro-
vided further evidence that the monkeys were sensitive 
to the grammatical structure of the visual sequences they 
were tracking. This outcome was not surprising in that the 
experiment relied on the same grammars the monkeys had 
already learned. It was nonetheless clear that lengthening the 
sequences negatively affected both monkeys’ performances, 
with a sizeable number of learning sessions required to bring 
them back to criterion performance. In addition to show-
ing an overall difference between Familiar and Control 
sequences, Obi demonstrated faster responding at every 
position within statistically constrained sequences, with 
Luke having some difficulty.

As in Experiment 1, Obi and Luke generalized respond-
ing to new instances drawn from the grammar they had 
been trained with in their first generalization session. In this 
experiment, Luke not only showed generalization by faster 
responses for statistically constrained Novel-Familiar and 
Familiar sequences as compared to Unfamiliar sequences, 
but also to Control sequences as well, which we propose 
may be evidence of stronger knowledge of the underlying 
statistical patterns. Additionally, as in Experiment 1, neither 
monkey showed a difference in response-time performance 
between the Familiar and Novel-Familiar sequences. Thus, 
the findings of Experiment 2 provide an even stronger case 
that the monkeys generalized their knowledge of the gram-
mar-generated statistical patterns, rather than relying on rote 
memorization of individual sequences.

Experiment 3

In the third experiment, the sequence length was increased 
to L8. There were two goals for this manipulation. One was 
to continue to strengthen the argument that the monkeys had 
learned about the underlying, grammar-like structure of the 
sequences they were working with by further increasing the 
number of exemplars used in both learning and generaliza-
tion phases. The second goal was to reach a length compa-
rable to those used in testing humans in artificial grammar 

experiments (see Cleeremans and McClelland 1991; Con-
way et al. 2010; Jamieson and Mewhort 2005; Shanks et al. 
1997), thereby creating a better basis for comparing per-
formance across species. The same grammars were used 
again at L8, now allowing 512 possible sequences (with four 
overlapping and discarded outcomes, 13131313, 24242424, 
31313131, and 42424242).

Procedure

A total of 384 grammar-related sequences were used in 
the learning phase for each monkey. The four overlapping 
sequences were discarded from the 128 sequences that 
remained, of which 64 were selected for generalization test-
ing and 60 were held in reserve.

Results

Independent t tests comparing mean RTs for each of the 
positions in Familiar sequences in the first generalization 
of Experiment 2 to the same position mean RTs in the first 
session of their learning phase in Experiment 3 were con-
ducted to analyze for any effects of continued practice. The 
results revealed that Obi performed the same at all positions 
(1 through 6, P = ns) in Familiar sequences in Experiment 
3 as when meeting criteria in Experiment 2, and that Luke 
performed the same at Positions 1 through 5 (P = ns) in 
Experiment 3 as when meeting criteria in Experiment 2. 
However, at Position 6, Luke was slower (P < 0.05) when 
beginning Experiment 3.

During the SL8 learning phase, two of Obi’s L8 sessions 
were excluded from analysis for not meeting criteria, with 
Obi completing on average approximately 900 sequences 
per session and Luke completing approximately 550 per ses-
sion. Obi responded significantly faster on Familiar versus 
Control sequences during session 5 (after 3,196 grammar 
sequence trials), both overall (P < 0.01) and at all but Posi-
tion 1 during sessions 5 through 10 (Table 3 and Fig. 8a). 
Luke required 32 sessions (after 15,727 grammar sequence 
trials) to demonstrate learning of Familiar versus Control 
sequences, P < 0.05, showing response differences at indi-
vidual Position 5 between Familiar and Control sequences 
(Table 4 and Fig. 8b). It should be noted that in this experi-
ment the positional difference was not statistically signifi-
cant until Sessions 38 through 43 for Luke.

During the first generalization session for which Obi com-
pleted at least 50 trials of each sequence type, an ANOVA 
analyzing performance on the first 60 sequences of each 
type revealed a significant overall effect, F(3,177) = 23.3, 
P < 0.0001. Performance was significantly faster on Familiar 
versus Novel-Familiar, Unknown, and Control sequences, all 
at P < 0.01 (Fig. 9a). Because Obi did not perform signifi-
cantly faster on Novel-Familiar sequences versus Unfamiliar 
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sequences, we conducted an ANOVA on his second gener-
alization sessions as well. In his second generalization ses-
sion, the ANOVA results again revealed a significant overall 
effect, F(3,177) = 9.75, P < 0.0001. Obi responded signifi-
cantly faster to Novel-Familiar and Familiar sequences as 
compared to Unfamiliar sequences, P < 0.05 and P < 0.01, 
respectively (Fig. 10), as he did in Experiment 2. Also, in 
this session his mean response time to Familiar sequences 
was significantly faster than responses to the Novel-Familiar 
sequences (P < 0.05), and Control sequences were signifi-
cantly faster than the Unknown sequences (P < 0.01).

Luke demonstrated an overall effect of all 55 sequences of 
each type in his first generalization session, F(3,162) = 8.96, 
P < 0.0001. He responded significantly faster to Novel-
Familiar and Familiar sequences than to Control sequences, 
P < 0.01 and P < 0.05, respectively, in addition to demon-
strating statistically faster response times to Novel-Familiar 

Fig. 8  Experiment 3 Learning results for Obi (a) and Luke (b); mean RTs for familiar versus control trials at each position (*P  <  0.05; 
**P < 0.01; and ***P < 0.001)

Fig. 9  Experiment 3 Generalization (first session) results for Obi (a) and Luke (b); *P < 0.05 and **P < 0.01. Error bars represent the standard 
deviation of the means over the analyzed session

Fig. 10  Experiment 3 Generalization (second session) results for Obi; 
*P < 0.05 and **P < 0.01. Error bars represent the standard devia-
tion of the means over the analyzed session
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sequences as compared to Unfamiliar sequences, P < 0.05 
(see Fig. 9b).

Discussion

Again, additional practicing after generalization either 
increased or sustained learning for both monkeys, with fur-
ther evidence for possible task-related motor practice effects 
at Position 1 as discussed earlier. However, it may be that 
the introduction of two additional positions (7 and 8) slowed 
Luke down somewhat at Position 6 in his first Experiment 
3 session.

As in the previous two experiments, results from the third 
experiment demonstrated learning and generalization of the 
artificial grammar-produced sequences. Using sequences 
with such a long length and an input corpus with such a 
large number of different exemplars in both learning and 
generalization phases, makes it highly unlikely that the mon-
keys were responding based solely on rote memorization. 
The monkeys’ successful performance in the generaliza-
tion phase, with L8 sequences and a larger number of total 
sequences, was impressive and equaled or exceeded that 
found in either of the preceding experiments. Rather than 
showing any decline with the increased challenge presented 
in this experiment, generalization performance improved 
with performance increasing over the three experiments to 
include faster performance for Novel-Familiar and Familiar 
compared to both Control and Unfamiliar sequences in some 
instances. Obi’s significantly faster response to the Famil-
iar as compared to the Novel-Familiar sequences appears to 
reveal the influence of memory for individual instances; he 
did respond faster to the Novel-Familiar than to the Unfa-
miliar sequences in the second session, showing that gener-
alization could occur. Overall, we believe that these findings 
highlight that both monkeys learned the underlying struc-
ture of the sequences—perhaps in addition to but not solely 
based on—remembering specific sequences.

General discussion

In three experiments, two rhesus macaques used a joystick 
to respond to the presentation of individual items within 
sequences of varying lengths (L4, then L6, and lastly L8). 
Each experiment was designed primarily to test two aspects 
of learning: the ability to discriminate statistically con-
strained sequences from random sequences that were not 
generated from the grammar and the ability to general-
ize such learning to novel sequences that were generated 
either from the same grammar or from a new one. All three 
experiments showed successful learning and generalization 
by both monkeys, in that their performance on the Familiar 
grammar-based sequences was significantly faster compared 

to the Control or Unfamiliar sequences. Importantly, the 
monkeys demonstrated these abilities at a sequence length 
and complexity similar to that used to examine learning in 
humans (Conway et al. 2010; Jamieson and Mewhort 2005). 
However, we recognize that faster responding to both the 
Familiar and Familiar-Novel sequences compared to both the 
Control and Unfamiliar sequences would indicate the strong-
est demonstration of learning. This learning effect was only 
observed in one monkey (Luke) in Experiment 2.

Because the grammar used in the current study was char-
acterized by transitional probabilities, in which any given 
element could be followed by one of two possible elements 
with equal probability, successful learning and generaliza-
tion by the monkeys likely involved sensitivity to such sta-
tistical probabilities. Item frequencies in the grammar were 
balanced, such that all items had an equal probability of 
occurring. Also, the ordinal position of individual items in 
each sequence was balanced (any given item could occur at 
any point in the sequence). Thus, distinguishing between 
novel sequences that were produced by either the familiar or 
unfamiliar grammar could not be done by rote memorization 
of an entire sequence (because all sequences presented in the 
generalization phase were novel). Neither could discrimina-
tion have been accomplished by being sensitive to the fre-
quency of individual items in the grammar (because these 
were equal across grammars), nor by being sensitive to item 
position (because all items could occur with equal frequency 
at any position in the sequence). Distinguishing between the 
novel sequence types could only be accomplished by learn-
ing the predictive nature of the transitional probabilities 
of the grammatical items experienced during the learning 
phase and then generalizing those transitional probabilities 
to the new sequences. On the other hand, some evidence of 
rote learning of individual items was observed; for instance, 
Obi demonstrated faster responding to Familiar sequences 
compared to Familiar-Novel sequences. Previous research 
has shown that nonhuman primates are able to learn a large 
number of visual stimuli (e.g., Fagot and Cook 2006) so it 
is perhaps not surprising that some rote learning of these 
sequences did occur.

Further evidence for sensitivity to the transitional prob-
abilities inherent in the grammars was demonstrated by the 
monkeys’ performance at individual positions within each 
sequence. In Experiment 1, both monkeys demonstrated 
faster response to Positions 2, 3, and 4 in grammar-gener-
ated sequences compared to the corresponding positions 
in the random sequences. Likewise, in Experiments 2 and 
3, Obi demonstrated learning of sequential relationships 
among the items as revealed by his anticipation of elements 
at all critical positions (Positions 2 through 6 and Posi-
tions 2 through 8, respectively). Luke also demonstrated 
positional learning although not as consistently. In Experi-
ments 2 and 3, Luke did respond faster to Positions 5 and 
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6 in the grammar-generated sequences than to the random 
sequences, although this individual difference was not sur-
prising. In our previous experiments with these monkeys, 
they revealed inconsistencies in positional learning within a 
fixed sequence (Heimbauer et al. 2012). As was the case with 
Luke, proximity to reward would be expected to facilitate 
both learning and motivation toward the end of any given 
sequence (Locurto et al. 2009, 2010) with observed perfor-
mance usually becoming faster at the final position. There 
were also noticeable differences in performance between all 
Locations for both monkeys throughout the experiments, 
but there was not an effect for a particular Location. We 
believe these differences were just a result of the fact that the 
monkeys were responding to grammars, whether they were 
familiar, novel-familiar, or unknown.

Regardless of these individual differences in learning, the 
present results are clear in demonstrating successful learning 
and generalization of the statistical probabilities contained 
within visual sequences generated from a relatively com-
plex finite-state grammar. However, this does not necessarily 
mean that the monkeys learned the grammar as such. Rather, 
they may have acquired sensitivity to repeated subsequences 
in the training stimuli, consisting of two or three elements. 
Indeed, there is a long tradition of using such “chunk” infor-
mation to explain performance in human sequence learning 
studies (e.g., Knowlton and Squire 1994—see Perruchet and 
Pacton 2006, for reviews). That is, sensitivity to statistical 
regularities need not reflect actual encoding of statistics 
but may instead result from memorization and generaliza-
tion over multi-element chunks. Such chunking may stem 
from well-known constraints on basic memory applied 
to sequence processing (Christiansen in press). Indeed, a 
recent study of cultural evolution in the laboratory using 
human participants has shown that language-like struc-
ture can emerge through a process of repeated chunking of 
sequences across “generations” of learners (Cornish et al. 
2017). If the monkeys in the current study also engaged in 
chunking the input sequences, at least in part, then this could 
potentially explain why some of the random control strings 
elicited elevated levels of performance because they could 
in principle have contained one or more familiar chunks by 
chance, which would have facilitated their processing. It is 
currently unknown, though, to what extent nonhuman pri-
mates employ such chunking processes, and it is important 
for future studies to compare such potential chunking to 
human abilities.

It is also worth noting that most of the previous stud-
ies with nonhuman primates that have successfully demon-
strated sequential learning of a finite-state grammar used 
much simpler grammars (Attaheri et al. 2015; Endress et al. 
2010; Saffran et al. 2008; Wilson et al. 2013; see Santolin 
and Saffran 2017). The present study and that by Locurto 
et al. (2015) are the only demonstrations of learning and 

generalization of sequences from a more complex artifi-
cial grammar. Interestingly, in the present study as well as 
Locurto et al.’s (2015) visual rather than auditory stimuli 
were used. It may be purely coincidental that the only 
demonstrations of learning sequential regularities from a 
complex grammar involved visual-motor rather than audi-
tory stimuli. On the other hand, it is possible that there are 
modality constraints affecting sequence processing in non-
human primates. For example, previous research suggests 
that nonhuman primates may be more adept at visual tempo-
ral and sequential processing compared to auditory process-
ing (Merchant and Honing 2013). Monkeys are quite good 
at synchronizing motor movements with visual rhythms but 
have difficulty with auditory-motor synchronization (Zarco 
et al. 2009). Merchant and Honing (2013) argued that these 
modality differences are due to the nonhuman primate brain 
having impoverished auditory-motor connections relative 
to humans. In terms of human statistical-sequence learn-
ing, the sensory modality clearly affects its efficiency and 
robustness (Conway and Christiansen 2005, 2009; Emberson 
et al. 2011; see Frost et al. 2015 for a review). However, 
in the case of humans, auditory sequential learning is gen-
erally superior to visual learning, whereas for nonhuman 
primates, perhaps the opposite is the case (Merchant and 
Honing 2013). The potential effect of sensory modality on 
nonhuman primate pattern learning is currently an area in 
need of further investigation (see Milne et al. 2018 for fur-
ther discussion).

As generalization of grammatical or statistically based 
patterns is clearly necessary for developing and understand-
ing human-like language (Kidd 2012), the present study 
offers the possibility that the necessary cognitive and neu-
ral capability to learn, represent, and generalize complex 
finite-state grammatical structures is phylogenetically old, 
rather than being human-specific (Wilson et al. 2015a, b). 
The link between natural language and performance on a 
visual statistical-sequence learning task such as this one is 
illustrated by recent evidence, showing that behavioral com-
petence on visual sequence learning tasks is correlated with 
language competence in humans (Arciuli and Simpson 2012; 
Conway et al. 2010; Misyak and Christiansen 2010; Misyak 
et al. 2010). Furthermore, the neural substrates underlying 
both visual sequential learning of an artificial grammar and 
visually presented natural language appear to be at least 
partly coextensive (Christiansen et al. 2012; Petersson et al. 
2004; Tabullo et al. 2013). Therefore, it would appear that 
these two monkeys possess at least some of the appropri-
ate cognitive and neural machinery that may play a role in 
human-like language.

On the other hand, the grammar used in the current 
study, while more complex than most others previously 
used with nonhuman primates, clearly does not have the kind 
of complexity found in human natural language. Another 
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consideration to point out is that although both monkeys 
learned the statistical dependencies of the grammar, it 
took them a very long time to do so. Even the very com-
plex finite-state grammars used by Jamieson and Mewhort 
(2005) and Conway et al. (2010) were learnable by human 
adults within a brief experimental session. The reason for the 
vast discrepancy in amount of time needed to demonstrate 
adequate learning is not clear; whether this reveals a true 
difference in cognitive capacity between the species, or just 
reflects the particular challenges facing human researchers 
who work with nonverbal animals, is uncertain (see Conway 
and Christiansen 2001 for further discussion on the difficul-
ties inherent in making comparisons between humans and 
nonhumans).

Certainly, the evidence from the present study as well 
as previous work suggests that humans and some nonhu-
man primates may share a common learning mechanism for 
rapidly processing and retaining aspects of serial order and 
complex structural information (e.g., Endress et al. 2010; 
Heimbauer et al. 2012; Inoue and Matsuzawa 2009; Locurto 
et al. 2015; Procyk et al. 2000; Saffran et al. 2008; Terrace 
et al. 2003; Wilson et al. 2013). However, current evidence 
also suggests that nonhuman primate communication does 
not exhibit human-like grammatical complexity. One expla-
nation for this apparent disconnect may be that nonhuman 
primates are limited relative to humans in their ability to 
learn more complex structures involving multiple nested 
nonadjacent dependencies (Conway and Christiansen 2001; 
de Vries et al. 2011). A recent study testing both humans 
and macaque monkeys on an auditory artificial grammar 
containing both adjacent and nonadjacent dependencies 
appears to support this view (Wilson et al. 2015a, b). If true, 
this suggests that humans may be drawing on more general 
processes of the primate cognitive system when passively 
learning some kinds of statistically based grammar-like pat-
terns, but the more complex processing ability may repre-
sent a critical juncture in the evolution of human language 
acquisition (Christiansen and Chater 2015; Conway and 
Christiansen 2001).

It may also be possible that statistical-based sequence 
learning abilities are used differently across different spe-
cies. Perhaps nonhuman primates use statistical-sequence 
learning not for communicative purposes, but for other 
nonlanguage survival functions, such as foraging. Indeed, 
implicit pattern learning abilities are likely used in an 
advantageous manner as specific foraging-related stud-
ies have demonstrated (de Resende et al. 2008; Lockhard 
2008; Macquart et al. 2008; Menzel 2009). What remains 
an open question is to what extent different species of 
nonhuman animals (primates and nonprimates) engage in 
statistical learning and generalization skills for different 
types of real-world tasks. To further understand the nature 
and evolution of statistical-sequence learning abilities, 

and how they have been co-opted for different types of 
functions, tasks, and domains, future work would usefully 
compare nonhuman and human artificial grammar learning 
performance using a variety of input structures (e.g., adja-
cent vs. nonadjacent dependencies), sensory modalities 
(e.g., visual vs. auditory), and task demands (e.g., com-
municative, navigation, or foraging-related types of tasks).

In sum, these results suggest that the ability that humans 
draw upon to learn sequence structure may be rudimen-
tary to primates, at least simians. These findings provide 
the basis for future comparative studies investigating the 
evolutionary roles of sequence learning in language and 
other domains.
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