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Statistical learning (SL) is believed to enable language acquisition by allowing individuals to learn regu-
larities within linguistic input. However, neural evidence supporting a direct relationship between SL and
language ability is scarce. We investigated whether there are associations between event-related poten-
tial (ERP) correlates of SL and language abilities while controlling for the general level of selective atten-
tion. Seventeen adults completed tests of visual SL, receptive vocabulary, grammatical ability, and
sentence completion. Response times and ERPs showed that SL is related to receptive vocabulary and
grammatical ability. ERPs indicated that the relationship between SL and grammatical ability was inde-
pendent of attention while the association between SL and receptive vocabulary depended on attention.
The implications of these dissociative relationships in terms of underlying mechanisms of SL and lan-
guage are discussed. These results further elucidate the cognitive nature of the links between SL mech-
anisms and language abilities.

� 2017 Elsevier Inc. All rights reserved.
1. Introduction

Historically, two areas of controversy in the study of language
are: (1) to what extent language is innately specified versus
learned through experience and (2) to what extent the mecha-
nisms activated during language acquisition are specific to lan-
guage processing (i.e., domain-specificity, Chomsky, 2011;
Gallistel, 2011; Newport, 2011). Increasingly, research findings
and theory have suggested that language is largely experience-
dependent and mediated by domain-general processes that allow
organisms to perceive and learn environmental patterns (Aslin &
Newport, 2012; Christiansen & Chater, 2015; Erickson &
Thiessen, 2015; Saffran, Aslin, & Newport, 1996). This type of
implicit learning or statistical learning (SL) can be defined as the
ability to extract probabilities from a series of discrete elements
and to form expectations about upcoming events based on that
information (Fiser & Aslin, 2001; Kirkham, Slemmer, & Johnson,
2002; Krogh, Vlach, & Johnson, 2013; Saffran, 2003; Siegelman &
Frost, 2015; Turk-Browne, Scholl, Johnson, & Chun, 2010). SL can
be construed as arising from general principles of cortical plastic-
ity, in which experience with a specific type of input leads to
improvements in the processing and efficiency of neural networks
that are devoted to processing that type of input (Reber, 2013).

SL is particularly important for the development of language
(Arciuli & Torkildsen, 2012; Conway & Pisoni, 2008; Gervain
& Mehler, 2010; Gogate & Hollich, 2010; Kuhl, 2004; Reber,
1967) including the acquisition of word boundaries (Saffran
et al., 1996), syntax (Ullman, 2004), word order (Conway,
Bauernschmidt, Huang, & Pisoni, 2010), and receptive vocabulary
(Ellis, Robledo, & Deák, 2014). The link between SL and language
ability is further supported by research showing that impairments
to SL may contribute to some of the observed language and learn-
ing difficulties (Nicolson & Fawcett, 2007; Ullman & Pierpont,
2005) such as in dyslexia (Du & Kelly, 2013; Howard, Howard,
Japikse, & Eden, 2006), specific language impairment (Evans,
Saffran, & Robe-Torres, 2009), autism (Jeste et al., 2015), and pop-
ulations with language delays caused by a period of deafness early
in development (Conway, Pisoni, Anaya, Karpicke, & Henning,
2011).

Early in the study of SL, most research focused on understand-
ing its underlying mechanisms, processes, and constraints. More
recently, research endeavors have taken an individual-differences
approach to determine whether SL abilities are associated with
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language skill as a way to provide a more direct empirical connec-
tion between the two constructs. In these studies, performance on
SL tasks has been found to be significantly correlated with mea-
sures of language performance (e.g., Arciuli & Simpson, 2012;
Conway et al., 2010; Ellis et al., 2014; Misyak, Christiansen, &
Tomblin, 2010; Spencer, Kaschak, Jones, & Lonigan, 2014). How-
ever, with few exceptions such as Morgan-Short, Faretta-
Stutenberg, Brill, Carpenter, and Wong (2014), Morgan-Short
et al. (2015) who reported correlations between SL performance
measured with the Weather Prediction Task (Foerde, Knowlton, &
Poldrack, 2006) and neural activation of second language learning
in adults, most of this research has been based only on behavioral
data. This represent a potential limitation because behavioral mea-
sures can only assess the final result of a complex chain of multiple
operations that may include perceptual/cognitive mechanisms,
response selection, and motor preparation and execution. In con-
trast, neural measures such as event-related potentials (ERPs) fol-
low more directly (in real-time) the processing of information of
the cognitive mechanisms of interest (e.g. Coch & Holcomb,
2003; Schwartz, Federmeier, van Petten, Salmon, & Kutas, 2003).
Additionally such measures do not necessarily require an overt
motor response.

Therefore the nature of the linkage between SL and language
ability could be further explored with a neurophysiological
approach. This approach remains to date very limited
(Christiansen, Conway, & Onnis, 2012; Tabullo, Sevilla, Segura,
Zanutto, & Wainselboim, 2013). For example, Christiansen et al.
(2012) measured the ERP correlates of SL using an artificial lan-
guage paradigm that required participants to learn the mapping
between a visual scene of unfamiliar shapes and non-word
sequences. The visual scenes and non-word sequences were gener-
ated according to an artificial grammar that specified the structural
relations among the stimuli. After the artificial grammar had been
learned, violations of the structural regularities elicited ERP corre-
lates of SL that were very similar in amplitude and scalp topogra-
phy to a modulation of the P600 component, an ERP correlate of
syntactic violations in natural language. This similarity was further
confirmed statistically by the lack of significant difference between
the P600 effects (ERP to syntactic violations minus ERP to syntac-
tically correct trials) observed with both artificial and natural lan-
guage grammars and a significant correlation between the ERP
effects on the two tasks. The authors argued that the P600 gener-
ated by the two types of syntactic violations were indistinguish-
able and hence that SL (observed with the artificial grammar
paradigm) and language processing (observed with syntactic pro-
cessing within a natural grammar paradigm) tap into the same
underlying neural mechanisms providing evidence for a domain-
general processing mechanism underlying both artificial and natu-
ral grammar processing, albeit still within a language-like context.

However, to further test the extent to which domain-general SL
is related to natural language processing, it is necessary to employ
SL tasks that are even less language-like than the one used by
Christiansen et al. (2012). For instance, that study incorporated
non-word sequences that are likely to tap into phonological coding
processes. Christiansen et al. (2012) also incorporated an artificial
language and grammar that was meant to (at least superficially)
reflect basic aspects of natural language, with both a referent sys-
tem (or vocabulary) and a simple form of syntax. Thus, the SL task
used in this experiment incorporated elements of language
(phonology, visual referent system, etc.) and therefore may have
been limited in its ability to fully examine the domain-generality
of SL.

One experimental task that might be useful in this regard is that
used by Jost, Conway, Purdy, Walk, and Hendricks (2015). In this
variation of the standard oddball paradigm (Squires, Squires, &
Hillyard, 1975), participants were presented with sequences of
visual, non-linguistic stimuli (colored circles; randomly assigned
between participants). Some stimuli were ‘‘standards” (i.e., that
were presented repeatedly). The remaining ‘‘deviant” stimuli
belonged to one of two different categories: predictor or target.
The participants were asked to respond to the target stimuli by
pressing a button. Participants were not told that the other type
of deviant stimuli—the predictor stimuli—would precede the target
with one of three different levels of fixed contingent probability in
relation to the target (i.e., ‘‘high”, ‘‘low”, and ‘‘null” predictability
with 90%, 20%, and 0% probabilities of the target following each
predictor type, respectively). With exposure to the three
predictor-target probabilities, participants learned these statistical
associations as revealed by a late positive ERP component that
increased with predictor-target probability. The ERP component
displayed the greatest amplitude for the ‘‘high” compared to the
‘‘low” or ‘‘null” predictors and hence was interpreted as an ERP
index of SL.

Jost et al. (2015) proposed that the observed late positivity was
a P300, an ERP component reflecting stimulus evaluation-based
decision or categorization processes as well as memory updating
of contextual representations (for a review, see Polich, 2007). How-
ever, given the late latency of the ERP effect reported by Jost et al.
(2015), an alternative interpretation could be that they found a
modulation of the P600 component. (Note that Coulson, King,
and Kutas (1998) have suggested that the P300 and P600 may actu-
ally be the same ERP component, but see Frisch, Kotz, von Cramon,
& Friederici, 2003). Interestingly, there is extensive evidence that
the P600 is a correlate of syntactic violation for both artificial
grammar paradigms (Christiansen et al., 2012; Friederici,
Steinhauer, & Pfeifer, 2002) and natural grammar paradigms
(Gunter, Stowe, & Mulder, 1997; Hagoort, Brown, & Groothusen,
1993; Neville, Nicol, Barss, Forster, & Garrett, 1991). Therefore, it
is possible that the component observed by Jost et al. (2015) was
in fact a P600 reflecting statistical rule-based predictor-target con-
tingency variation. These results may thus provide further, albeit
somewhat indirect, support for a link between SL and language
processing. To provide a more direct test of this relationship, here
we examine whether ERP correlates elicited in a task similar to Jost
et al. (2015) are associated with participants’ language ability.

In the present study, the statistical structure of input sequences
provided to participants was similar to the one used by Jost et al.
(2015). Therefore, we expected to find a similar late positivity that
would increase with target predictability, i.e. with predictor-target
statistical contingency. Hence, our operational definition of SL at
the neurophysiological level was a centro-parietal late positive
ERP effect (between experimental ‘‘Predictability” conditions with
varying predictor-target statistical contingency). In addition, simi-
lar to most behavioral studies of SL such as serial reaction time
tasks (Nissen & Bullemer, 1987), our operational definition of SL
was also defined by participants’ response times (RTs) on the SL
task with faster RT to targets as predictability (predictor-target sta-
tistical contingency) increases i.e. fastest RT when the target fol-
lows the ‘‘high predictability” (HP) rather than the ‘‘low
predictability” (LP) stimuli.

To test the relationship between SL and language ability, we
used three measures of language performance. Given that SL has
been implicated in vocabulary acquisition (Ellis et al., 2014;
Howard, Howard, Japikse, & Eden, 2006), receptive vocabulary
was measured with the ‘‘Peabody Picture Vocabulary Test IV”
(PPVT-IV; Dunn & Dunn, 2007). Because previous research has sug-
gested a link between SL and performance on natural language
grammar (e.g., Christiansen et al., 2012; Tabullo et al., 2013), the
second was a measure of grammatical ability, the ‘‘Grammaticality
Judgment” subtest of the Comprehensive Assessment of Spoken
Language (CASL; Carrow-Woolfolk, 1999). The last measure
assessed the ability to predict words within a sentence: the ‘‘Sen-
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tence Completion” subtest of the CASL (Carrow-Woolfolk, 1999).
This was included because Conway et al. (2010) observed a behav-
ioral correlation between SL and the ability to predict the final
words in spoken sentences.

One additional contribution of the present study is that it also
examines whether the ERP correlates of SL are related to language
ability while controlling for each individual’s general level of selec-
tive attention. This control is important to demonstrate the speci-
ficity of the relationship between SL and language ability. Indeed,
general selective attention could, in principle, affect performance
on any task (e.g. Schneider & Shiffrin, 1977) including SL (for a
review, see Daltrozzo & Conway, 2014) and language assessments.
Thus, it is possible that inter-individual variability in attention may
become a confounding variable if not controlled. That is, a given
participant may devote a high level of attention to an SL task and
also to language assessments thereby scoring better on all mea-
sures compared to a participant who devotes less attention and
thereby scores lower overall. This general cognitive effect, if not
controlled, could drive any observed interactions between SL and
language ability. Therefore, in the present study we attempted to
control for attention by requiring participants to complete an addi-
tional task measuring general selective attention, and then treating
it as a covariate in our analyses.

We predicted that, consistent with previous evidence of a link
between SL and language ability, our behavioral (i.e. RT effect
between two experimental conditions of target ‘‘Predictability”:
HP and LP) and neurophysiological (i.e. centro-parietal late positive
ERP effect between HP and LP) operational definitions of visual SL
would be associated with measures of language ability in adults
independently of variations of attention.
2. Materials and methods

In this within-subject design, participants were first assessed
for their general level of selective attention with a Flanker task
(Eriksen & Eriksen, 1974) and then completed a visual SL task while
ERPs were recorded. Finally, participants were administered three
standardized measures of language ability.
2.1. Participants

Seventeen participants (11 females, M = 23.94 years, SD = 8.61,
18–49 years) from Georgia State University participated in the
study to receive class credit. Participants reported no language,
cognitive, neurological, or psychological deficits. All were native
English speakers and all except two were right-handed according
to the Edinburg Handedness Inventory (Oldfield, 1971). All partic-
ipants provided written informed consent to the study, which was
conducted in accordance with the guidelines of the Declaration of
Helsinki and approved by the local Ethics Committee (the Institu-
tional Review Board of Georgia State University).
2.2. Reliability of our measures

The reliability of our behavioral and neurophysiological mea-
sures were computed from the data of our sample of participants
using the standard Cronbach’s a coefficient (Cronbach, 1951) as
well as the ‘‘greatest lower bound” (glb, Woodhouse & Jackson,
1977) because the glb is a better lower bound estimate of the reli-
ability than a (Sijtsma, 2009) with: a < glb < true reliability < 1. a
and glb were computed using the cronbach() function from the
psy library and the glb() function from the psych library in R version
3.2.0.
2.3. Language measures

Participants were administered three standardized measures of
language: the Peabody Picture Vocabulary Test, 4th Edition (PPVT-
IV; Dunn & Dunn, 2007); and the Grammaticality Judgment (GJ)
and Sentence Completion (SC) subtests of the Comprehensive
Assessment of Spoken Language (CASL; Carrow-Woolfolk, 1999).
While the CASL is only normed through age 21 years and
11 months, some of our participants exceeded that age. Conse-
quently, we chose to analyze raw scores for all measures instead
of standardized scores that depend on the CASL norms. Although
the CASL subtests were not intended for use with participants
above the age of 21, the raw scores still give an absolute measure
of grammatical and sentence prediction abilities, which is appro-
priate for the purpose of the present study that is focused on these
abilities in each of our participants in relation to the other partic-
ipants of the study rather than in relation to an age-peer popula-
tion norm.

2.3.1. Peabody picture vocabulary test-IV
The PPVT-IV is a widely used assessment of standard American

English receptive vocabulary in which examinees are asked to
select from four full-color drawings the one that best depicts the
meaning of a spoken word. There are a total of 228 items repre-
senting various parts of speech on the test, each of which is scored
as correct or incorrect, for a maximum possible raw score of 228.
However, items are arranged into sets of 12, and administration
discontinues when a participant responds incorrectly to eight
items within one set. Dunn and Dunn (2007) provide Cronbach’s
a by age range. Our participants spanned 6 age ranges: 17–18
a = 0.96, 19–21 a = 0.95, 22–24 a = 0.93, 25–30 a = 0.95, 31–40
a = 0.94, and 41–50 a = 0.97. Based on the data of our sample of
participants (from the 45 items that were completed by all partic-
ipants and where the standard deviation across participants was
not null) we computed the lower bound of the reliability of the
PPVT-IV measure according to a and glb (see ‘‘Reliability of our
Measures” section above): a = 0.734; glb = 0.849.

2.3.2. Grammaticality Judgment
The GJ subtest is part of the Syntactic Language Category of the

CASL. It measures an individual’s ability to identify and correct
grammatical errors within a sentence. Errors are assessed in ten
syntactic areas: noun-verb agreement, noun number, verb tense,
pronouns, negatives, prepositions, irregular forms, direct/indirect
objects, active/passive voice coordination, and embedding. Sen-
tences both with and without errors are read aloud to the exami-
nee, and he or she is asked to determine if ‘‘the sentence is the
correct way to speak in class.” If not, the participant is asked to
change a single word to correct the sentence. Practice sentences
include, ‘‘The boy are happy” (for which the correction could be
‘‘The boys are happy” or ‘‘The boy is happy”) and ‘‘My mother is
at home” (which is correct as is). High performance on this test
requires both grammar ability and metalinguistic skill that allows
for separately attending to the meaning and form of a sentence.
According to Carrow-Woolfolk (1999), the ability to judge gram-
maticality is different from the ability to choose appropriate mor-
phemes and requires that basic sentence patterns of the native
language, English in this case, be stored at a deep level. The GJ sub-
test measures how deep an examinee’s knowledge is by scoring
ability to recognize an error (1 point) and the ability to correct it
(1 point) separately. The maximum raw score is 103. Carrow-
Woolfolk provides Spearman-Brown adjusted Rasch split-half
internal reliability calculations by age band. Our participants
spanned two age bands and beyond: 16–19 r = 0.90 and 19–22
r = 0.85. Based on the data of our sample of participants (from
the 13 items that were completed by all participants and where
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the standard deviation across participants was not null) we com-
puted the lower bound of the reliability of the GJ measure accord-
ing to a and glb (see ‘‘Reliability of our Measures” section above):
a = 0.696; glb = 0.905.

2.3.3. Sentence completion
The SC subtest is part of the Lexical/Semantic Language Category

of the CASL. It measures an individual’s ability to retrieve and
express one of a handful of appropriate words that will accurately
complete a spoken sentence. The examiner reads a sentence aloud
leaving out the last word. The examinee is tasked with completing
the sentence using a single grammatically and semantically correct
word that is not already contained in the sentence. Appropriate
responses include nouns, verbs, adjectives, and adverbs. An exam-
ple of a practice item is, ‘‘In order to start the car, Dad must turn
the ____”. Acceptable responses include ‘‘key” or ‘‘ignition”. As the
test advances, sentences become much longer and more complex
with more complicated vocabulary and concepts. Performance on
this assessment requires understanding of sentence context and
use of it to make a prediction, and retrieve and orally express an
appropriate word. Understanding of vocabulary, grammar, and
event knowledge andmemory are critical. The maximum raw score
for this subtest is 61. Spearman-Brown split-half reliability for 16–
19 years is reported as 0.76 and for 19–22 years as 0.82. Based on
the data of our sample of participants (from the 26 items that were
completed by all participants and where the standard deviation
across participants was not null; since the glb computation on 26
items resulted in a non-positive definite matrix, the computation
was performed on only 25 items) we computed the lower bound
of the reliability of the SCmeasure according to a and glb (see ‘‘Reli-
ability of our Measures” section above): a = 0.487; glb = 0.696.

2.4. Flanker task: control of the general level of selective attention

To control for possible variations in the general level of selective
attention across participants, we measured the performance on a
Flanker task (Eriksen & Eriksen, 1974; Shalev & Tsal, 2003), which
was collected immediately before the SL task. The Flanker task is a
visual search task measuring a person’s ability to detect relevant
information in the midst of irrelevant information (Eriksen &
Eriksen, 1974). This task is commonly used to test response inhibi-
tion and selective attention (Casey et al., 2000; Fenske & Eastwood,
2003; Hübner, Steinhauser, & Lehle, 2010; Lavie, Hirst, de Fockert,
& Viding, 2004). It comprises a central target (e.g., ‘<’) flanked by
non-target stimuli, which either match the direction of the target
in half of the trials (congruent stimuli; e.g. ‘<<<<<’) or are in the
opposite direction of the target in the rest of the trials (incongruent
stimuli; e.g. ‘>><>>’). A directional response (left or right) is
assigned to the target stimulus. Response times for incongruent tri-
als are typically longer than for congruent trials—a difference
known as the Flanker effect (Eriksen & Eriksen, 1974). The Flanker
task allows the testing of how well attention is restricted to a par-
ticular object or location (Fenske & Eastwood, 2003) and thus can
be used as a measure of selective attention (Lavie et al., 2004). Par-
ticipants were required to give a speeded left- or right-hand
response to indicate the direction of the target. The number of cor-
rect button-press responses with the left and right hand was coun-
terbalanced across congruent and incongruent experimental
conditions. A new trial was presented immediately after the partic-
ipant’s response. Immediately after the Flanker task, participants
were administered the SL task. Flanker effect scores were com-
puted for accurate trials only by subtracting mean response times
for incongruent trials from mean response times for congruent tri-
als. Wöstmann et al. (2013) report a Cronbach a of 0.68 for this
measure. Based on the data of our sample of participants we
computed the lower bound of the reliability of the Flanker Effect
measure according to a and glb (see ‘‘Reliability of our Measures”
section above): a = 0.472, glb = 0.910.

2.5. Sequential learning task

In the SL task (Fig. 1A) colored circles appeared in the center of
the computer screen on a dark background similar to those used in
Jost et al. (2015). Stimuli were displayed for 500 ms followed by a
dark screen displayed for an additional 500 ms. Thus, the visual
stimuli were presented with a 1000 ms stimulus onset asynchrony.

Participants were instructed to press a button as quickly as pos-
sible when a given ‘‘target” stimulus was presented. Each partici-
pant was presented with a target selected pseudo-randomly from
among a set of six colored circles stimuli. Unbeknownst to the par-
ticipants, the sequence of stimuli followed a set of fixed statistical
regularities (see Fig. 1A). For each participant, in addition to the
target stimulus, one of the stimuli was pseudo-randomly chosen
as a ‘‘standard” stimulus, one as a ‘‘high predictability” (HP) predic-
tor, and one as a ‘‘low predictability” (LP) predictor. During each
trial the standard stimulus was repeated a pseudorandom number
of times. Next, one of the two (HP or LP) predictors was presented,
each with a 50% probability of occurrence. The HP predictor was
followed by the target in 90% of the trials and by the standard in
10% of the trials. The LP predictor was followed by the target in
20% of the trials and by the standard in 80% of the trials. Each trial
concluded with a second series of standards of a random length.

For each predictability condition (HP and LP) therewere 50 trials
for a total of 100 trials dividedamongfiveblocks of 20 trials. All trials
were randomly ordered across the two predictability conditions (HP
and LP) in a continuous fashion such that the participantwas unable
to distinguish one trial from another. A break lasting a minimum of
30 swas given between each block. Stimuliwere presented on aDell
Optiplex 755 computer running E-Prime version 2.0.8.90.

2.6. Electroencephalography acquisition

While the participant performed the SL task, the electroen-
cephalograph (EEG) was recorded from 256 scalp electrodes using
an Electrical Geodesic Inc. sensor net (Fig. 1B) and was pre-
processed using Net Station version 4.3.1 with subsequent process-
ing using custom scripts written in MATLAB (version R2012b
8.0.0783, MathWorks) and the EEGLAB toolbox (version
10.2.2.2.4a; Delorme & Makeig, 2004). Active electrode impe-
dances were kept below 50 kX. The EEG was acquired with a
0.1–100 Hz band-pass filter at 250 Hz with vertex reference and
then re-referenced to the average reference, resampled to 256 Hz
(to allow filtering with Fast Fourier Transformation), and low-
pass filtered at 30 Hz. Participants were instructed to refrain from
blinking throughout the experiment. Eye blink artifacts were cor-
rected by independent component analysis. Other remaining arti-
facts were removed manually. This procedure removed 18.2% of
the trials [HP: M = 17.5%, SD = 12.5; LP: M = 18.8%, SD = 14.0;
two-tailed paired Student: t(16) = 0.723, p = 0.480, N = 17;
Wilcoxon matched-pairs signed-ranks test: W = �11, p = 0.762, n
pairs = 15, two pairs excluded because values in each sample were
equal]. The continuous EEG was segmented into epochs �200 ms
to +1000 ms with respect to the predictor onset. ERPs were
baseline-corrected at 200 ms prestimulus. Separate ERPs were
computed for each participant, predictability condition, and elec-
trode. All experimental sessions were conducted in a 132 square
foot double-walled, sound-deadened acoustic chamber.

2.7. Statistical procedures

Individual mean response times (RT) of the SL task to target
stimuli following the HP and LP predictors and mean amplitude



Fig. 1. (A) Sample sequence of colored circles. HP: ‘‘High Predictability” predictor, LP: ‘‘Low Predictability” predictor, T: Target, S: Standard. For each participant, HP, LP, T, and S
were pseudo-randomly assigned to one of six colored circles (brown, white, green, pink, red, and blue; see bottom of the figure). (B) 256 Electrical Geodesic Inc. sensor net for
EEG recordings and the nine regions of interest. Left (LAn), middle (FRz), and right anterior (RAn); left (LCn), middle (CNz), and right central (RCn); and left (LPo), middle (POz),
and right posterior (RPo) regions used for topographic analyses. (C) Scatter plot between the SL Response Time (RT) effect and the Grammaticality Judgment (GJ) raw score
centered. RT effect: RT in the Low Predictability condition (LP) minus RT in the High Predictability condition (HP). Vertical unit: millisecond. (D) Scatter plot between the RT in
the high and low predictability conditions and the GJ raw score centered. This figure indicates reduced RT as GJ raw score increased in only the HP condition (dark line), i.e.
higher SL with higher GJ raw score was related to learning the predictor-target statistical contingency in the HP condition. The gray line indicates RT as a function of GJ raw
score in the LP condition. Vertical unit: millisecond. (E) Scatter plot between the neurophysiological and behavioral operational definitions of sequential learning. SL ERP effect
(ERP in the HP conditionminus ERP in the LP condition) over the centro-parietal (POz) region of interest between 500 ms and 1000 ms (Unit: microvolts) - SL RT effect (RT in the
LP conditionminus RT in the HP condition) (Unit: ms). (For interpretation of the references to color in this figure legend, the reader is referred to theweb version of this article.)
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ERPs time-locked to the predictors between 500 ms and 1000 ms
(time-window based on the grand average; Fig. 2) were analyzed
with separate linear mixed models (LMM, see Supplementary
Materials and Methods), one for each language score.

To estimate the lower bound of the reliability of our behavioral
and our neurophysiological operational definitions of SL based on
the data of our sample of participants, we computed the SL RT
effect (RT in the LP condition minus RT in the HP condition) and
the SL ERP effect (mean ERP between 500 ms and 1000 ms over
the centro-parietal ROI (POz) in the HP condition minus corre-
sponding mean ERP in the LP condition). The lower bounds of the
corresponding reliabilities are: a = 0.892 and glb = 0.974 for the
SL RT effect; and a = 0.897 and glb = 0.944 for the SL ERP effect.
3. Results

3.1. Language measures mean and correlation

The mean raw scores on the three language measures were: GJ:
M = 78.5, SD = 7.9; PPVT-IV: M = 205.9, SD = 7.3; and SC: M = 49.1,
SD = 3.2. These scores were uncorrelated [GJ vs. PPVT-IV:
rs = 0.095, p = 0.717; GJ vs. SC: rs = -0.150, p = 0.565; PPVT-IV vs.
SC: rs = 0.440, p = 0.077; N = 17; two-tailed].1

3.2. Sequential learning task response times

The applied LMMs for the analysis of the RTs are described in
Tables 1 and 2 (See Supplementary Material). The LMM on individ-
ual mean RTs showed a main effect of Predictability [F(1,15)
= 8.04; p = 0.013] indicating faster responses to the target follow-
ing the HP predictor (M = 379 ms, SD = 71) compared to the LP pre-
dictor (M = 424 ms, SD = 51) but no interaction that reached
significance between Predictability and any of the language scores,
although the interaction with GJ was marginally significant [PPVT-
IV raw score: F(1,15) = 2.08, p = 0.169; GJ raw score: F(1,15) = 3.46,
p = 0.083; SC raw score: F(1,15) = 0.65, p = 0.432]. Because the 2-
way interactions were not significant, Attention was not included
in any of the models.

Given the marginal significance of the interactions between
Predictability and GJ raw score (p = 0.083), we tested the correla-
tions between the SL RT effect (RT in the LP condition minus RT
in the HP condition) and the GJ raw score, which revealed a posi-
tive relationship between the GJ raw score and the SL RT effect
[rs = 0.522, p = 0.031; N = 17; two-tailed] (see Fig. 1C). Fig. 1D addi-
tionally shows the regression lines for each Predictability condition
separately, indicating that RTs to the HP condition were faster as
the GJ score increase.

In sum, the behavioral results indicate that with exposure, par-
ticipants were able (at least in the HP condition) to extract the sta-
tistical structure embedded within the sequences as reflected by
quicker responses to the target when following a HP predictor than
when following a LP predictor. This behavioral measure of SL
appeared to be related to the GJ raw score with larger SL RT effect
associated with higher performance on this language measure.

3.3. SL Task: event-related potentials

Fig. 2 displays the grand averaged ERPs across all participants
time-locked to the two predictors (HP and LP) at the nine regions
of interest used for topographic analyses. Visual inspection
suggests a larger centro-parietal late positivity between
1 Spearman’s correlation rs was used throughout the manuscript because this
correlation coefficient is less sensitive to outliers than Pearson’s and thus more
appropriate for small sample sizes.
approximately 500 ms and 1000 ms for the HP predictor compared
to the LP predictor, replicating the general effect observed by Jost
et al. (2015).

The applied LMMs for the analysis of the ERPs are described in
Tables 1 and 3–5 (See Supplementary Material). The LMM on the
mean amplitude ERPs time-locked to the predictors between
500 ms and 1000 ms (time-window based on the grand average,
Fig. 2) revealed a main effect of Predictability [F(1, 4522.0)
= 51.16; p < 0.001] indicating SL had occurred according to our
neurophysiological operational definition. To test the correlation
between our behavioral and our neurophysiological operational
definition of SL, we computed the mean SL ERP effect (i.e. the mean
amplitude of the ERP in the HP condition minus the mean ampli-
tude of the ERP in the LP condition) over the centro-parietal
(POz) ROI between 500 ms and 1000 ms. The trend for a positive
correlation between SL RT effect (RT in the LP condition minus
RT in the HP condition) and SL ERP effect did not reach significance
with the Spearman test [rs = 0.306, p = 0.232; N = 17; two-tailed]
(Fig. 1E).

We also found an interaction between Predictability, GJ raw
score, and ROI [F(8,4522.0) = 2.06; p = 0.036] together with an
interaction between Predictability, GJ raw score, ROI, and general
level of selective attention (Flanker effect centered) [F(18,208.7)
= 5.94; p < 0.001] as depicted on Figs. 3 and 4. These interactions
remained significant after McCarthy and Wood (1985) correction
[F(8,4522.0) = 3.56; p < 0.001 and F(18,208.7) = 3.21; p < 0.001;
respectively]. Figs. 3 and 4 indicate that the relationship between
the centro-parietal SL ERP effects and GJ raw score was similar
between high and low attention. Specifically, the figures reveal
that in the centro-parietal ROI (POz), higher amplitudes for the
HP condition (but not the LP condition) are associated with higher
language (GJ) scores, and this was true for high and low general
selective attention. As indicated in Figs. 3 and 4, the interaction
with the general level of selective attention stems mostly from
ERP effects at frontal and central ROIs (i.e. LAn, FRz, RAn, LCn,
and CNz) with larger (absolute) ERP effects (across GJ scores) under
high compared to low attention while the ERP effects at POz, (our
operational definition of SL ERP effect, see Introduction) remains
similar between high and low attention.

In addition, an interaction was found between Predictability,
PPVT-IV raw score centered, and ROI [F(8,4522.0) = 3.08;
p = 0.002] together with an interaction between Predictability,
PPVT-IV raw score, ROI, and general level of selective attention
(Flanker effect centered) [F(18,208.7) = 4.74; p < 0.001] as depicted
on Figs. 5 and 6. These interactions remained significant after
McCarthy and Wood (1985) correction [F(8,4522.0) = 3.97;
p < 0.001 and F(18,208.7) = 3.74; p < 0.001; respectively]. Figs. 5
and 6 indicate that the relationship between SL ERP effects and
PPVT-IV raw score differed between high and low attention. Specif-
ically, the figures reveal that in the centro-parietal (POz) ROI,
higher amplitudes for the HP condition (but not the LP condition)
are associated with higher language (PPVT-IV) scores, but this
was true only for high general selective attention. As indicated in
Figs. 5 and 6, the interaction with the general level of selective
attention stems not only from the ERP effects at POz, (our opera-
tional definition of SL ERP effect, see Introduction) but also from
ERP effects at other cortical sites (i.e. frontal and central ROIs) with
large (absolute) ERP effects (across PPVT-IV scores) under high
compared to low attention.

Finally, Predictability and SC raw score centered [F(8,4522.0)
= 0.021; p = 0.884] and Predictability, SC raw score centered, and
ROI did not interact significantly [F(8,4522.0) = 0.655; p = 0.732].
All the above-mentioned LMM are compared in Table1 (See Sup-
plementary Material).

In sum, these neurophysiological results indicate that partici-
pants were able to extract the statistical structure embedded



Fig. 2. Grand averaged ERPs. N = 17 participants; Nine regions of interest (see Fig. 1B); Grand averaged ERPs in response to the HP (solid thick lines) and LP (dotted thin lines)
predictors (positivity upward in microvolts; time in seconds).

Fig. 3. Predictability Condition � GJ raw score interaction for each ROI under low attention. The x-axis is the mean-centered GJ raw score, and the y-axis is the LMM
estimated ERP mean amplitude between 500 ms and 1000 ms post predictor onset (positivity upward in microvolts). The solid gray line is the simple effect of the mean-
centered GJ raw score in the ‘‘High Predictability” condition (HP, predictor followed in 90% of the trials by the target), and the broken gray line is the simple effect of the mean-
centered GJ raw score in the ‘‘Low Predictability” condition (LP, predictor followed in 20% of the trials by the target).
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within the sequences. Importantly, the centro-parietal SL ERP
effects appeared to be related to the GJ raw score independently
of the general level of selective attention, with larger ERP effects
being associated with higher performance on this measure of
grammatical ability. On the other hand, larger centro-parietal SL
ERP effects were associated with higher performance on receptive
vocabulary according to the PPVT-IV raw score but only for partic-
ipants who scored high on general selective attention according to
the Flanker task. Finally, no ERP effects were associated with the
measure of sentence completion (SC).
4. Discussion

The aim of this study was to investigate whether visual SL is
related to language ability. Visual SL was assessed with a
predictor-target task that contained statistical contingencies
(modeled after Jost et al., 2015). Language ability was assessed
with three tasks that explored receptive vocabulary (the PPVT-IV;
Dunn & Dunn, 2007), grammatical ability (the GJ subtest of the
CASL; Carrow-Woolfolk, 1999), receptive vocabulary (the PPVT-
IV), and sentence completion (the SC subtest of the CASL;



Fig. 4. Predictability Condition � GJ raw score interaction for each ROI under high attention. The x-axis is the mean-centered GJ raw score, and the y-axis is the LMM
estimated ERP mean amplitude between 500 ms and 1000 ms post predictor onset (positivity upward in microvolts). The solid gray line is the simple effect of the mean-
centered GJ raw score in the ‘‘High Predictability” condition (HP, predictor followed in 90% of the trials by the target), and the broken gray line is the simple effect of the mean-
centered GJ raw score in the ‘‘Low Predictability” condition (LP, predictor followed in 20% of the trials by the target).

Fig. 5. Predictability Condition � PPVT-IV raw score interaction for each ROI under low attention. The x-axis is the mean-centered PPVT-IV raw score, and the y-axis is the
LMM estimated ERP mean amplitude between 500 ms and 1000 ms post predictor onset (positivity upward in microvolts). The solid gray line is the simple effect of the mean-
centered PPVT-IV raw score in the ‘‘High Predictability” condition (HP, predictor followed in 90% of the trials by the target), and the broken gray line is the simple effect of the
mean-centered PPVT-IV raw score in the ‘‘Low Predictability” condition (LP, predictor followed in 20% of the trials by the target).
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Carrow-Woolfolk, 1999). Consistent with our prediction, the
results indicated—both at a behavioral and neurophysiological
level—that visual SL is related to language performance. Impor-
tantly, late centro-parietal ERPs indicated: (1) a relationship
between SL and grammatical ability in both low and high general
selective attention groups, and (2) a relationship between SL and
receptive vocabulary only in the high general selective attention
group. Next, we discuss these findings in more detail and
consider the implications of this dissociation in terms of the under-
lying memory systems and mechanisms (e.g., procedural vs.
declarative and implicit vs. explicit) that are involved in language
processing.



Fig. 6. Predictability Condition � PPVT-IV raw score interaction for each ROI under high attention. The x-axis is the mean-centered PPVT-IV raw score, and the y-axis is the
LMM estimated ERP mean amplitude between 500 ms and 1000 ms post predictor onset (positivity upward in microvolts). The solid gray line is the simple effect of the mean-
centered PPVT-IV raw score in the ‘‘High Predictability” condition (HP, predictor followed in 90% of the trials by the target), and the broken gray line is the simple effect of the
mean-centered PPVT-IV raw score in the ‘‘Low Predictability” condition (LP, predictor followed in 20% of the trials by the target).

48 J. Daltrozzo et al. / Brain & Language 166 (2017) 40–51
4.1. Behavioral and neurophysiological correlates of statistical learning

The behavioral data demonstrated that SL occurred as indicated
by a SL RT effect: faster RTs to the target when it was highly pre-
dictable by the preceding stimulus (i.e. when the target followed
the predictor with a 90% probability in the ‘‘HP condition”) com-
pared to RTs to the target when it was less predictable by the pre-
ceding stimulus (i.e. when the target followed the predictor with a
20% probability in the ‘‘LP condition”). The size of this SL RT effect
was 45 ms, which is in the typical range of RT effects previously
reported in the SL literature (e.g. Baldwin & Kutas, 1997; Eimer,
Goschke, Schlaghecken, & Stürmer, 1996; Ferdinand, Mecklinger,
& Kray, 2008).

SL was further confirmed with the ERP findings. Visual inspec-
tion of grand averages (Fig. 2) in the present study suggests a larger
centro-parietal positivity between 500 ms and 1000 ms in
response to the HP compared to the LP predictor. This SL ERP effect
showed a trend for a positive correlation with the SL RT effect
(Fig. 1E) in line with the assumption that the late centro-parietal
ERP effect between HP and LP conditions reflects an index of SL.
Furthermore, the SL ERP effect observed in the present study clo-
sely replicates the findings of Jost et al. (2015), who found a larger
centro-parietal positivity in a similar time-window in response to
the HP predictor (followed in 90% of the trials by the target, as in
our paradigm) compared to the LP predictor (followed in 20% of
the trials by the target, also like in our paradigm). Given the similar
design to the study of Jost et al. (2015) this replication was
expected. Jost et al. (2015) interpreted the occurrence of the
P300 to the HP predictor stimuli as an indication that participants
formed an association or mental ‘‘chunk” between the HP predictor
and the target. This interpretation is consistent with previous sug-
gestions that this ERP component reflects chunking processes
(Verleger, 1988) and that chunking processes are an important
aspect of implicit learning and SL (Perruchet & Pacton, 2006). Per-
ruchet and Pacton proposed that through tracking statistical con-
tingencies, participants form chunks between highly associated
stimuli. In the present study, this means that participants essen-
tially treat the HP predictor at some level to be equivalent to the
target itself. This interpretation converges with one view of the
P300 wherein this component reflects target detection and evalu-
ation processes during sequence processing (Van Zuijen, Simoens,
Paavilainen, Näätänen, & Tervaniemi, 2006). An alternative expla-
nation is that the positive ERP component elicited in the present
study could be a P600, a component known to be elicited by syn-
tactic violations from grammars of natural languages (Hagoort
et al., 1993) and from artificial grammars (Christiansen et al.,
2012). However, the P600 component is typically elicited for viola-
tions of syntactic or grammatical structure. Since the current task
did not manipulate syntactic violation per se, the observed compo-
nent here may differ from a typical P600. The possible link
between SL and natural language ability is explored further in
Section 4.2.
4.2. Relations between statistical learning and language ability

Results from the LMM and correlational analyses revealed that
the SL RT effect was related to our measure of grammatical ability
(i.e. the GJ raw score). While the LMM analysis suggested a rela-
tionship with our measure of receptive vocabulary (i.e., the
PPVT-IV raw score), correlational analyses were not able to confirm
this result. At a neurophysiological level, our ERP measure of SL—
the centro-parietal SL ERP effect, which may be interpreted as a
P300 (or possibly a P600 effect, see discussion above)—was related
to grammatical ability as evidenced by an interaction between pre-
dictor type (HP versus LP), GJ raw score, and ROI between 500 ms
and 1000 ms (with a larger centro-parietal positive amplitude in
response to the HP predictor compared to the LP predictor for par-
ticipants with higher GJ raw score). That is, greater visual SL was
related to a higher GJ raw score. This relationship was found to
be similar (at the centro-parietal cortical area, the cortical site used
to define our operational definition of SL ERP effect) in both the
high and low general selective attention groups. In addition, a
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similar interaction was found with another language measure
assessing receptive vocabulary (i.e. the PPVT-IV raw score). How-
ever, this later interaction was observed only in the high general
selective attention group.

From an information processing point of view, the link between
SL and grammatical ability is likely due to SL mechanisms that are
used to encode structural and grammatical regularities in spoken
language (Christiansen et al., 2012). These results are consistent
with previous research demonstrating links between SL and gram-
matical ability (Christiansen et al., 2012; Conway et al., 2011; Kidd,
2012). One contribution of the current study is that the association
between visual SL (according to our ERP operational definition of
SL) and grammatical ability of the natural language did not appear
to depend on the participants’ general level of selective attention
(as measured by a Flanker task). Thus, this result suggests that
visual SL (the ability to encode statistical regularities and to use
this information to predict upcoming units in the visual modality)
and grammatical ability of the natural language share implicit
mechanisms (i.e. mechanisms that do not require attention to be
activated, Shiffrin & Schneider, 1977) and might depend more
upon procedural and sequential memory. The same cannot be said
of the relationship between visual SL and receptive vocabulary.
Indeed, the centro-parietal SL ERP effect interaction with the
PPVT-IV raw score varied dramatically with attention, being pre-
sent only in the high general selective attention group. Possibly,
SL and the processing of vocabulary would share explicit mecha-
nisms (i.e. mechanisms that do require attention to be activated;
Shiffrin & Schneider, 1977) and relies more on declarative memory.
In fact, the dissociation between the SL—grammatical ability and
the SL—receptive vocabulary relationships is in line with the Ull-
man’s dual-systemmodel of language (Ullman, 2004), which posits
exclusive associations between procedural/sequential memory (a
type of implicit or automatic learning) and grammatical processing
on one end and declarative memory (a type of explicit memory)
and semantic/vocabulary processing on the other end.

The third measure of language, which assessed an individual’s
ability to retrieve and express one of the few appropriate words
that would accurately complete a spoken sentence (the SC raw
score) did not interact with SL. Indeed, this measure depends not
only on a correct syntactic analysis of the to-be-completed sen-
tences and on single-word vocabulary processing (which may
explain the low–though non-significant–correlation between the
PPVT-IV and the SC score) of each words of a sentence, but also
on other mechanisms required to: (1) analyze the semantic content
at the sentential level, and (2) retrieve an appropriate word to
complete the sentence. These other mechanisms likely rely on
explicit cognitive control processes and require a higher level of
attention (e.g., Daltrozzo, Wioland, & Kotchoubey, 2012; January,
Trueswell, & Tompson-Schill, 2009). Because of the likely involve-
ment of these more attention-demanding-mechanisms, it is possi-
ble that the SC task is less sensitive to variations in SL ability but
more sensitive to variations in aspects of cognitive control or exec-
utive function (January et al., 2009). Alternatively or as a comple-
mentary explanation, the lack of interaction between SL and SC
while interactions were found between SL and PPVT-IV and GJ
could stem from differences of reliability between these language
measures (higher than 0.849 and 0.905 for the PPVT-IV and GJ
scores, respectively, but only higher than 0.696 for the SC score).

The above-mentioned difference in results between our three
measures of language is also consistent with our correlational
results, which showed that these language measures were essen-
tially unrelated to each other in our sample of adults (with a very
low correlation coefficient between the GJ score and the two other
language scores and a low correlation between the PPVT-IV and the
SC score). This lack of correlation further supports the idea that
these three measures are not assessing the performance of a
general language ability, but instead measure separate, somewhat
independent skills.

The above-mentioned difference in results between our three
measures of language is also consistent with our correlational
results, which showed that these language measures were essen-
tially unrelated to each other in our sample of adults. This lack of
correlation further supports the idea that these three measures
are not measuring the performance of a general language ability,
but instead separate, somewhat independent skills.

Importantly, not only was the link between SL and grammatical
ability not due to individual variations in general selective atten-
tion, but the link between SL and language performance overall
also did not appear to be simply due to individual variations in per-
ceptual processing. Indeed, visual processing performance was
controlled for in our task because our measures of SL were not
absolute measures but relative measures. Our tests of interactions
with language performance were with the two levels of the Predic-
tor condition (i.e. HP and LP). That is, we tested how the RT effect
(RT differences between HP and LP conditions) and ERP effects
(ERP differences between HP and LP conditions) varied with lan-
guage performance. Therefore, assuming that visual processing
performance was similar between the HP and the LP conditions,
none of the reported interactions or correlation between language
skills and the SL RT effect or SL ERP effect could be explained by a
variation of visual processing performance across participants.

While general selective attention and perceptual processing can
hardly explain the reported relationships between SL and language
abilities, the fact that our measures of SL were not absolute mea-
sures but relative measures (between our HP and LP experimental
conditions) cannot fully rule out that other cognitive abilities (e.g.,
intelligence or working memory) may underlie these relationships
(Misyak & Christiansen, 2012). Although several studies indicate
that SL is weakly correlated with these other cognitive abilities
(e.g. McGeorge, Crawford, & Kelly, 1997; Reber, Walkenfeld, &
Hernstadt, 1991), further studies will be required to fully address
these issues.

Our discussion of ERP effects reported in this study focused
mostly on those observed at the centro-parietal cortical site
because our ERP operational definition of SL was at this scalp loca-
tion (see Introduction), however ERP effects between HP and LP
found also at other locations including the frontal area could have
driven our reported interaction between the SL ERP effect, GJ, and
attention. With a very similar paradigm, Jost et al. (2015) reported
also large frontal ERP effects between various target predictability
conditions. There are several possible (competing or complemen-
tary) interpretations for the source(s) of these frontal ERP effects,
e.g. the modulations of a Contingent Negative Variation (Walter,
Cooper, Aldridge, Mccallum, & Winter, 1964) or a Slow Negative
Wave (Lang & Kotchoubey, 2000) or the opposite scalp projection
of a dipole source (oriented along the frontal to centro-parietal
direction) of the SL ERP effect. These issues are discussed more
extensively in Daltrozzo and Conway (2014).

While there is a clear positive trend between the SL (RT effect)
and a language (GJ raw score) behavioral measure (Fig. 1C), the lin-
ear correlation is not highly significant p = 0.03. Indeed, the sample
size of N = 17 limits the statistical power of the analysis. This issue
limits also the statistical power of the tested interactions between
the SL and the language behavioral measures. However, even under
these conditions of statistical power,wewere still able to findamar-
ginally significant interaction between these behavioral measures.

4.3. General discussion

The fact that the observed relationship between SL and
language ability was with a visual non-linguistic SL task suggests
that, at least to some extent, the processes involved in SL are
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domain-general (Kirkham et al., 2002). This stands in contrast to
other research findings suggesting that SL may be mediated by a
distributed set of modality-specific mechanisms, each tied to a par-
ticular type of input (Conway & Christiansen, 2005; Frost,
Armstrong, Siegelman, & Christiansen, 2015). Conway and Pisoni
(2008) suggested that there may be a combination of modality-
specific and domain-general processes involved in SL, each relying
on different neural substrates, which could help account for both
the presence of stimulus-specificity in SL tasks but also findings
revealing associations between non-linguistic SL and language
measures (Shafto, Conway, Field, & Houston, 2012). Future
research is needed to disentangle the role of domain-generality
and domain-specificity in SL and how each is used in the service
of language processing.

It is important to note that, despite using advanced analyses,
the present approach cannot determine directional causation, as
we relied notably upon interactions between pre-existing language
ability and SL effects rather than using an experimental manipula-
tion to modify SL or language ability. Therefore, even though our
results provide evidence of a link between SL and language ability,
and even though evidence of this link extends beyond our study,
being strengthened by previous behavioral (Conway et al., 2010)
and neurophysiological studies (Christiansen et al., 2012; Tabullo
et al., 2013), the correlational nature of this approach does not
allow us to make a causal conclusion about the relationship
between SL and language performance. As most of the previous
SL research has emphasized, it seems likely that the association
between SL and language is due to SL playing a causal role in the
acquisition and processing of language. On the other hand, it is
at least possible that the causal direction goes in the opposite
direction, with better language abilities somehow causing better
learning in SL tasks. Future research could fruitfully attempt to dis-
entangle the causal nature of this relationship. This may be
achieved for instance through training studies that attempt to
increase SL ability and then test if language performance improves
via cognitive transfer (Conway, Gremp, Walk, Bauernschmidt, &
Pisoni, 2012; Smith, Conway, Bauernschmidt, & Pisoni, 2015).

Finally, as per Newman, Tremblay, Nichols, Neville, and Ullman
(2012), we modeled ROIs with an unstructured random effect (see
Supplementary Materials and Methods). Thus theoretically, our
model allowed ROIs to freely correlate. However, it is in principle
possible to model the spatial correlation within and across ROIs.
However, this approach could in practice be problematic because
it corresponds tomore complexmodels, requiringmore parameters
to estimate, hence a higher risk of lack of estimation convergence.

In sum, the current findings suggest that language ability is based
in part on neuralmechanisms that are devoted to learning statistical
contingencies in the environment, whether the input is linguistic or
not. ERPs indicated that the relationship between SL and grammat-
ical ability was independent of attention, while the association
between SL and receptive vocabulary depended on attention. The
relationships between SLmechanisms and these two language abil-
ities in turn do not appear to be mediated by differences in percep-
tual processing. These results contribute to the debate about the
nature of language, suggesting that it is both experience-
dependent and based on domain-general pattern learning mecha-
nisms. This finding in turn provides the theoretical basis for future
exploration of the efficacy of cognitive training approaches to
enhance SL and language,which could be a boon for individualswith
a learning or communication disorder, such as dyslexia, specific lan-
guage impairment, autism, or other language delays.
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