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ABSTRACT—When learners encode sequential patterns and

generalize their knowledge to novel instances, are they

relying on abstract or stimulus-specific representations?

Research on artificial grammar learning (AGL) has shown

transfer of learning from one stimulus set to another, and

such findings have encouraged the view that statistical

learning is mediated by abstract representations that are

independent of the sense modality or perceptual features of

the stimuli. Using a novel modification of the standard AGL

paradigm, we obtained data to the contrary. These ex-

periments pitted abstract processing against stimulus-

specific learning. The findings show that statistical

learning results in knowledge that is stimulus-specific

rather than abstract. They show furthermore that learn-

ing can proceed in parallel for multiple input streams

along separate perceptual dimensions or sense modalities.

We conclude that learning sequential structure and gen-

eralizing to novel stimuli inherently involve learning

mechanisms that are closely tied to the perceptual char-

acteristics of the input.

A core debate in the psychological sciences concerns the extent

to which acquired knowledge consists of modality-dependent

versus abstract representations. Traditional information-pro-

cessing approaches to cognition have emphasized the operation

of amodal symbol systems (Fodor, 1975; Pylyshyn, 1984),

whereas more recently, embodiment and similar theories have

proposed instead that cognition is grounded in modality-specific

sensorimotor mechanisms (Barsalou, Simmons, Barbey, & Wil-

son, 2003; Glenberg, 1997). This debate has been especially

intense in the area of implicit statistical learning of artificial

grammars.1 In his early work, A.S. Reber (1967, 1969) dem-

onstrated implicit learning in participants who were exposed to

letter strings generated from an artificial grammar. The letter

strings obeyed the overall rule structure of the grammar, being

constrained in terms of which letters could follow which other

letters. Participants not only showed evidence of learning this

structure implicitly, but also could apparently transfer their

knowledge of the legal regularities from one letter vocabulary

(e.g., M, R, T, V, X) to another (e.g., N, P, S, W, Z) as long as the

same underlying grammar was used for both (A.S. Reber, 1969).

This effect has been replicated many times, with transfer being

demonstrated not just across letter sets (e.g., Brooks & Vokey,

1991; Mathews et al., 1989; Shanks, Johnstone, & Staggs, 1997),

but also across sense modalities (Altmann, Dienes, & Goode,

1995; Manza & Reber, 1997; Tunney & Altmann, 2001).

Transfer effects in artificial grammar learning (AGL) are

usually explained by proposing that the learning is based on

abstract knowledge, that is, knowledge not directly tied to the

surface features or sensory instantiation of the stimuli (Altmann

et al., 1995; Pena, Bonatti, Nespor, & Mehler, 2002; A.S. Reber,

1989; Shanks et al., 1997). For instance, the human cognitive

system might encode patterns among stimuli in terms of ‘‘ab-

stract algebra-like rules’’ that encode relationships among

amodal variables (Marcus, Vijayan, Rao, & Vishton, 1999,

p. 79). Such a proposal emphasizes the learning of structural

relations among items and deemphasizes the acquisition of in-

formation pertaining to specific features of the stimulus ele-

ments. Alternatively, participants may learn the statistical

structure of the input sequences using associative mechanisms

that are sensitive to modality- or stimulus-specific features (e.g.,

Chang & Knowlton, 2004; Christiansen & Curtin, 1999; Conway
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& Christiansen, 2005; McClelland & Plaut, 1999; Perruchet,

Tyler, Galland, & Peereman, 2004).2

In this article, we present new evidence from a set of AGL

experiments supporting a modality-constrained or embodied

view of statistical learning. In three experiments, we used a

novel modification of the AGL paradigm to examine the nature of

statistical learning within and across modalities. Specifically, in

each experiment, we employed two different finite-state gram-

mars in a dual-grammar crossover design in which the gram-

matical test sequences of one grammar were used as the

ungrammatical test sequences for the other grammar. For ex-

ample, in Experiment 1, participants were exposed to visual

sequences from one grammar and auditory sequences from the

other grammar. In the test phase, new grammatical sequences

from both grammars were presented. Crucially, for each par-

ticipant, all test items from both grammars were instantiated

only visually or only auditorily. In such a crossover design, if

participants have learned the abstract rules underlying both

grammars, they ought to classify all sequences generated by the

grammars, whether they are presented visually or auditorily, as

equally grammatical. However, if participants have learned

statistical regularities specific to the sense modality in which

those regularities were instantiated, they ought to classify a

sequence as grammatical only if it is presented in the same sense

modality as were the training sequences generated from the

same grammar. The data from these experiments follow this

latter pattern, suggesting that learners encoded the sequential

patterns and generalized their knowledge to novel instances by

relying on stimulus-specific, not abstract, representations.

EXPERIMENT 1: MULTIMODAL LEARNING

In Experiment 1, we assessed multimodal learning by present-

ing participants with auditory tone sequences generated from

one grammar and visual color sequences generated from a

second grammar. We then tested participants using novel

grammatical stimuli from both grammars; half the stimuli were

generated from one grammar and the other half were generated

from the other grammar, but all sequences were instantiated in

only one of the vocabularies (tones or colors). Given our scoring

system, in which a classification of a test sequence as gram-

matical was scored as correct only if the sequence was presented

in the sense modality used during training on the corresponding

grammar, a null effect of learning (performance level of 50%

correct) could mean (a) that participants were unable to ad-

equately learn the statistical regularities or (b) that participants

learned the regularities but the knowledge existed in an amodal

format that did not retain information regarding sense modality.

Accordingly, performance levels significantly above chance

would show both that participants learned the statistical regu-

larities from the grammars and that the knowledge was modality-

specific. In order to compare dual-grammar learning to per-

formance in the standard AGL paradigm, we employed single-

grammar, unimodal learning conditions as a baseline.

Method

Subjects

Forty students (10 in each condition) were recruited from Cor-

nell University undergraduate psychology classes and received

extra credit for their participation.

Materials

Two different finite-state grammars, Grammar A and Grammar B

(Fig. 1), were used to generate two sets of nonoverlapping

stimuli. We used 9 grammatical sequences from each grammar

in the training phase and 10 grammatical sequences from each

grammar in the test phase; all sequences contained at least three

and no more than seven elements. For a given grammar, each

letter was mapped onto a color vocabulary (five differently col-

ored squares) or an auditory vocabulary (five pure tones). The

five colored squares ranged along a continuum from light blue to

green; the colors were chosen such that each was perceptually

distinct yet similar enough to the others to make a verbal coding

strategy difficult. The five tones had frequencies of 210, 245,

Fig. 1. The grammars, training items, and test items used in all three
experiments. The diagrams on the left depict Grammar A (top) and
Grammar B (bottom). The letters from each grammar were mapped onto
colors or tones (Experiment 1), colors or shapes (Experiment 2a), tones or
nonwords (Experiment 2b), two different shape sets (Experiment 3a), or
two different nonword sets (Experiment 3b).

2We distinguish between two related notions of what it means to be abstract (for
further discussion, see Dienes, Altmann, & Gao, 1999; Mathews, 1990; Red-
ington & Chater, 1996). Knowledge can be abstract to the extent that it (a)
represents common properties among stimuli or (b) is independent of the sense
modality or perceptual features of the stimuli. Abstraction in the first sense is
generally assumed to be involved in human learning, although it has been hotly
debated whether such abstraction occurs via a rule-learning or a statistically
based mechanism. The second notion of abstraction has also been a subject of
intense debate and is the focus of the current article.
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286, 333, and 389 Hz. These frequencies were chosen because

they neither conform to standard musical notes nor contain

standard musical intervals between them (Conway & Chris-

tiansen, 2005). Depending on the experimental condition, the

Grammar A sequence VVM, for example, might be instantiated

as two light-green stimuli followed by a light-blue stimulus or as

two 389-Hz tones followed by a 268-Hz tone.

All visual stimuli were presented in a serial format in the

center of a computer screen. Auditory stimuli were presented via

headphones. Each element (color or tone) of a particular se-

quence was presented for 500 ms, with 100 ms occurring be-

tween elements. A 1,700-ms pause separated each sequence

from the next.

Procedure

Participants were randomly assigned to one of four conditions,

two experimental and two baseline. Participants in the experi-

mental conditions were exposed to the training sequences from

both grammars, with one training set instantiated as colored

squares and the other as tones. The assignment of grammars to

modalities was counterbalanced across participants. Addition-

ally, within each grammar, the assignment of the letters to par-

ticular visual or auditory elements was randomly determined for

each participant.

At the beginning of the experiment, participants in the ex-

perimental conditions were told that they would hear sequences

of auditory stimuli and see sequences of visual stimuli. They

were told that it was important to pay attention to the stimuli

because afterward they would be tested on what they had ob-

served. The instructions did not explicitly mention the existence

of the grammars, nor did they indicate that the sequences fol-

lowed underlying rules or regularities of any kind. The 18

training sequences (9 from each grammar) were presented ran-

domly, one at a time, in each block, for a total of six blocks. Thus,

a total of 108 sequences was presented. Note that because the

order of presentation was entirely random, the visual and

auditory sequences were completely intermixed with one an-

other. Figure 2 illustrates the stimulus presentation.

In the test phase, participants in the experimental conditions

were instructed that the stimuli they had observed were gener-

ated according to a complex set of rules that determined the

order of the elements within each sequence. Participants were

told they would next be exposed to a new set of color or tone

sequences. Some of these sequences would conform to the same

set of rules as before, whereas the others would be different.

Their task was to judge which of the sequences followed the

same rules as before and which did not. For the test phase, 20

sequences were used, 10 that were grammatical with respect to

one grammar and 10 that were grammatical with respect to the

other. For half of the participants, these test sequences were

instantiated using the color vocabulary (visual-experimental

condition), and for the other participants, the test sequences

were instantiated using the tone vocabulary (auditory-experi-

mental condition). For scoring purposes, the test sequences from

the grammar that was instantiated in the same sense modality as

in the training phase were deemed grammatical, whereas the test

sequences from the other grammar were deemed ungrammat-

ical. Thus, a classification judgment was scored as correct if the

test sequence was judged as grammatical and its sense modality

was the same as that of the training sequences that were gen-

erated from the same grammar. Similarly, a classification judg-

ment was also scored as correct if the test sequence was judged

as ungrammatical and its sense modality was different from that

of the training sequences that were generated from the same

grammar. In all other cases, a classification judgment was scored

as incorrect.

Participants in the baseline single-grammar conditions fol-

lowed a similar procedure except that they received training

sequences from only one of the grammars, instantiated in

just one of the sense modalities, with grammar and modality

assignments counterbalanced across participants. The 9 train-

ing sequences were presented randomly once per block for

six blocks, for a total of 54 presentations. The baseline partic-

ipants were tested using the same test set as the experimental

participants, instantiated with the same vocabulary on which

they were trained. Thus, the baseline unimodal conditions

Fig. 2. Sample of stimulus presentation in Experiment 1. Sequences from the two grammars were interleaved
randomly. For each participant, one grammar was instantiated with the color vocabulary, and the other grammar
was instantiated with the tone vocabulary. Each letter below the time line denotes a particular color or tone,
depending on the grammar and vocabulary. The time line indicates the duration of the sequence elements and the
intervals between elements, in milliseconds.
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(visual-baseline and auditory-baseline conditions) assessed

visual and auditory learning with one grammar alone, much as in

the standard AGL design.

Results and Discussion

Table 1 reports for each group the mean number and percentage

of correct classifications (out of 20), the result of a t test com-

paring the mean score with chance level, and the prep value

(Killeen, 2005) and effect size, d (Cohen, 1988). Each group’s

overall performance was better than would be expected by

chance. Furthermore, there were no significant differences be-

tween the experimental groups and their respective baseline

groups: visual-experimental versus visual-baseline, t(9) < 1;

auditory-experimental versus auditory-baseline, t(9) 5 1.1, p 5

.30, prep 5 .76, d 5 0.35.

These results indicate that participants can simultaneously

learn statistical regularities from two input streams generated

from two different artificial grammars, each instantiated in a

different sense modality. Perhaps surprisingly, performance in

the dual-grammar conditions was no worse than performance

after single-grammar learning. This lack of a learning decrement

suggests that learning of visual statistical structure and learning

of auditory statistical structure occur in parallel. Furthermore,

these results challenge claims that learning occurs indepen-

dently of sense modality (e.g., Altmann et al., 1995). If learning

had been modality-independent, then test sequences generated

by the two grammars would have appeared equally grammatical

to the participants, driving performance to chance levels

(according to our scoring scheme). Thus, our data suggest that

participants’ knowledge of the statistical patterns, instead of

being amodal or abstract, was stimulus-specific. We next asked

whether learners can similarly learn from two different input

streams that are within the same sense modality.

EXPERIMENT 2: INTRAMODAL LEARNING ALONG
DIFFERENT PERCEPTUAL DIMENSIONS

The purpose of Experiment 2 was to further explore the stimu-

lus-specific nature of implicit statistical learning. Specifically,

we assessed whether participants could learn two sets of sta-

tistical regularities when they were presented within the same

sense modality but instantiated along two different perceptual

dimensions. Experiment 2a examined intramodal learning in the

visual modality, and Experiment 2b examined auditory learning.

For Experiment 2a, one grammar was instantiated with colors,

and the other with shapes. For Experiment 2b, one grammar was

instantiated with tones, and the other with nonwords.

TABLE 1

Mean Performance and Results of Tests of Significance (Versus Chance) in Experiments 1, 2, and 3

Modality or
dimension

Experimental conditions (dual-grammar) Baseline conditions (single-grammar)

Number
correct

Percentage
correct t(9) prep

Number
correct

Percentage
correct t(9) prep

Experiment 1

Visual 12.7 63.5 2.76n .95a 12.4 62.0 2.54n .94a

Auditory 14.1 70.5 4.38nn .99b 13.1 65.5 3.44nn .97a

Experiment 2a

Colors 11.9 59.5 2.97n .96a

Shapes 11.9 59.5 2.31n .92b 13.2 66.0 6.25nnn .99a

Experiment 2b

Tones 13.7 68.5 4.25nn .99a

Nonwords 12.0 60.0 2.58n .94a 12.2 61.0 2.34n .93b

Experiment 3a

Shape Set 1 12.0 60.0 2.58n .93a

Shape Set 2 11.2 56.0 1.65 .85b 11.6 58.0 2.95n .96a

Experiment 3b

Nonword Set 1 10.9 54.5 1.49 .83c

Nonword Set 2 12.4 62.0 6.47nnn .99a 13.3 66.5 3.79nn .98a

Note. The number correct is out of a possible maximum of 20. All t tests were two-tailed. For the colors and tones conditions in
Experiment 2, the baseline conditions were the baseline conditions in Experiment 1 (i.e., visual-baseline and auditory-baseline
conditions, respectively). For the Shape Set 1 and Nonword Set 1 conditions in Experiment 3, the baseline conditions were baseline
conditions from Experiment 2 (shapes-baseline and nonwords-baseline, respectively).
ad > .8. bd > .5. cd > .2.
np < .05. nnp < .01. nnnp < .001.
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Method

Subjects

Sixty participants (10 in each condition) were recruited in the

same manner as in Experiment 1.

Materials

Experiment 2 incorporated the same grammars and training and

test sequences from Experiment 1. Experiment 2a used two

visual vocabularies: the same set of colors used in Experiment 1

and a set of five abstract, geometric shapes. The shapes were

chosen to be perceptually distinct yet not amenable to a verbal

coding strategy. Experiment 2b used two auditory vocabularies:

the same set of tones used in Experiment 1 and a set of re-

cordings of five different nonwords (vot, pel, dak, jic, and rud)

spoken by a human speaker (from Gómez, 2002).

Procedure

Participants were randomly assigned to one of six conditions:

two for Experiment 2a, two for Experiment 2b, and two new

single-grammar baseline conditions. The general procedure was

otherwise the same as in Experiment 1. In Experiment 2a, par-

ticipants were trained on the two visual grammars and then

tested on their ability to classify novel sequences instantiated

using one of the two vocabularies. In Experiment 2b, partici-

pants were trained on both auditory grammars and then tested

on novel sequences instantiated using one of the two auditory

vocabularies.

The two new baseline conditions provided data for single-

grammar performance for the new shape and nonword vocabu-

laries (note that for the analyses of the colors and tones condi-

tions, we used the baseline data from Experiment 1).

Results and Discussion

Table 1 shows that each group’s overall performance was better

than expected by chance. Furthermore, there were no statistical

differences between the experimental groups and their corre-

sponding baseline groups: colors-experimental versus colors-

baseline, t(9)< 1; shapes-experimental versus shapes-baseline,

t(9) 5�1.13, p 5 .29, prep 5 .77, d 5 0.36; tones-experimental

versus tones-baseline, t(9) < 1; nonwords-experimental versus

nonwords-baseline, t(9) 5 �0.178, p 5 .86, prep 5 .55, d 5

0.056.

The results for Experiments 2a and 2b were similar to those for

Experiment 1. Participants were adept at learning two different

sets of statistical regularities simultaneously—even when the

same sense modality was used for both (shape and color se-

quences in Experiment 2a, tone and nonword sequences in

Experiment 2b). Performance levels were no worse in these

dual-grammar conditions than in single-grammar conditions.

These results suggest that participants can acquire statistical

regularities from two streams of information within the same

sense modality, as long as the two streams differ along a major

perceptual dimension. A further implication of these results is

that participants’ knowledge of the underlying statistical

structure was stimulus-specific rather than abstract.

EXPERIMENT 3: INTRAMODAL LEARNING ALONG
THE SAME PERCEPTUAL DIMENSION

We next looked at dual-grammar learning within the same sense

modality when the vocabularies lay along the same perceptual

dimension. Experiment 3a incorporated two different sets of

visual shapes, and Experiment 3b incorporated two different

sets of auditory nonwords.

Method

Sixty participants (10 in each condition) were recruited. Ex-

periment 3 incorporated the same grammars and sequences that

were used in Experiments 1 and 2. Experiment 3a employed two

visual vocabularies: Shape Sets 1 and 2 (Fig. 3). Shape Set 1 was

the same set of shapes used in Experiment 2a; Shape Set 2 was a

new set of shapes similar in overall appearance but perceptually

distinct from Set 1. Experiment 3b employed the nonword vo-

cabulary used in Experiment 2b (Nonword Set 1), as well as a

new nonword set consisting of tood, jeen, gens, tam, and leb

(Nonword Set 2).

Participants were randomly assigned to one of six conditions,

two for Experiment 3a, two for Experiment 3b, and two new

single-grammar baseline conditions. The general procedure was

identical to that for Experiment 2 except that different vo-

cabularies were used. That is, in Experiment 3a, participants

were exposed to sequences from both grammars, with one

grammar instantiated using Set Shape 1 and the other grammar

instantiated using Set Shape 2; subsequently, they were tested

on novel sequences generated from both grammars but instan-

tiated using only one of the vocabularies. Similarly, in Experi-

ment 3b, participants received training sequences from both

grammars, one grammar instantiated using Nonword Set 1 and

Fig. 3. The visual vocabularies used in Experiment 3a. Shape Set 1
(which was also used in Experiment 2a) is at the top, and Shape Set 2 is at
the bottom.
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the other generated using Nonword Set 2, and were then tested

on sequences generated from both grammars but instantiated

using one of the nonword sets only. The two new baseline con-

ditions provided data for single-grammar performance for the

new Shape Set 2 and Nonword Set 2 vocabularies.

Results and Discussion

As Table 1 reveals, when exposed to two different statistically

governed streams of visual input, each with a distinct vocabulary

of shapes, learners on average were able to learn the structure

for only one of the streams. This same result was found when

learners were exposed to two different nonword auditory

streams. Thus, under dual-grammar conditions, learners showed

above-chance classification performance for only one of the

vocabularies and grammars. As we remarked earlier, chance-

level performance could be due to either an inability to learn the

underlying regularities or to having acquired these regularities

in terms of abstract representations that do not distinguish items

on the basis of their perceptual characteristics. Thus, the data

from Experiment 3 imply that either (a) intramodal dual-gram-

mar statistical learning did not occur because of perceptual

confusion of the stimuli or (b) the knowledge of the two gram-

mars, once learned, was comingled because the input elements

were perceptually similar. Either way, traditional theories of

AGL that specify abstract representations appear to have diffi-

culty accounting for such low-level, perceptual effects.

OVERALL ANALYSES

To better quantify the differences in learning across the three

experiments, we submitted all data to a 4 � 2 � 2 analysis of

variance that contrasted condition (multimodal, intramodal–

different dimension, intramodal–same dimension, or unimodal

baseline), modality (visual or auditory), and grammar (Grammar

A or Grammar B). There was a main effect of condition,

F(3, 144) 5 2.66, p 5 .050, prep 5 .92, Zp
2 ¼ :053. There were

no main effects of modality or grammar, nor were there any

significant interactions (ps > .05).

Figure 4 shows mean test performance collapsed across

grammar and modality. Post hoc comparisons revealed that

performance in the intramodal, same-dimension condition was

significantly lower than performance in both the multimodal

(p 5 .009, prep 5 .97) and the baseline (p 5 .044, prep 5 .93)

conditions. This outcome confirms that there was a learning

decrement for intramodal learning in Experiment 3, when the

two grammars were instantiated using vocabularies along the

same perceptual dimension.

GENERAL DISCUSSION

In this research, we sought to determine the nature of the

acquired knowledge underlying implicit statistical learning.

We distinguished between two possibilities. On the one hand,

as traditional information-processing approaches suggest, it is

possible that learners encode the underlying structure of complex

sequential patterns in an abstract (amodal) fashion that does not

retain information regarding the perceptual features of the input.

On the other hand, embodied cognition theories (Barsalou et al.,

2003) suggest that the learner’s representations rely on modality-

specific sensorimotor systems. Our data support the latter view.

Experiment 1 showed that participants can learn statistical

regularities from two artificial grammars when one is presented

visually and the other auditorily. Because of our crossover de-

sign, the results suggest that learning was modality-specific;

otherwise, performance would have been at chance levels.

Furthermore, test performance under these multimodal, dual-

grammar conditions was identical to performance under uni-

modal, single-grammar conditions, which suggests that the

underlying learning systems operated in parallel and inde-

pendently of one another. Experiment 2 extended these results,

showing that learners can also simultaneously learn regularities

from two input streams within the same sense modality—as long

as the respective vocabularies differ along a major perceptual

dimension. Experiment 3 further showed that learning suffered

when the two grammars used vocabularies along the same per-

ceptual dimension; in this case, statistical learning was limited

to just one of the two input streams.

These data challenge claims that learning in an AGL task may

consist of modality-independent representations (Altmann

et al., 1995) or abstract rules (Marcus et al., 1999; A.S. Reber,

1989). Some AGL studies purportedly show transfer effects

across modalities, suggesting that the underlying knowledge is

abstract and independent of the vocabulary used during train-

ing. However, there has been considerable controversy sur-

rounding the transfer data (e.g., Christiansen & Curtin, 1999;

Marcus, 1999; Mathews, 1990; McClelland & Plaut, 1999;

Redington & Chater, 1996). For example, transfer may be

Fig. 4. Mean test performance for all three experiments: multimodal
conditions (Experiment 1); intramodal, different-dimension conditions
(Experiment 2); intramodal, same-dimension conditions (Experiment 3);
and baseline, single-grammar conditions (Experiments 1, 2, and 3).

910 Volume 17—Number 10

Abstract Versus Stimulus-Specific Learning



achieved by noticing the presence of low-frequency illegal

starting elements in the transfer set (Tunney & Altmann, 1999),

rather than by relying on abstract knowledge acquired at

training. Or participants may appear to demonstrate transfer if

they merely encode certain patterns of repeating elements (e.g.,

‘‘BDCCCB’’) and then, during the test phase, recognize the same

repetition patterns in items with a new vocabulary (e.g.,

‘‘MTVVVM’’; Brooks & Vokey, 1991; Redington & Chater, 1996).

Thus, it is far from clear that transfer effects reflect the operation

of abstract knowledge formed during the learning phase.

In addition to providing evidence for modality-specificity, the

data reveal, quite remarkably, that participants are just as adept

at learning statistical regularities from two input streams as from

one. This points to the possibility of parallel, independent

learning mechanisms across and within sense modalities. It has

been commonly assumed that statistical learning involves a

single, unitary mechanism that operates over all types of input

(e.g., Kirkham, Slemmer, & Johnson, 2002). However, our data

indicate that this view is inaccurate, or at least incomplete. It is

not clear how a single, amodal mechanism could afford simul-

taneous learning of multiple statistical regularities and keep the

stimulus-specific representations independent of one another

(Experiments 1 and 2). Previous research has suggested that

although there are commonalities in statistical learning across

vision, audition, and touch, there also are important modality

differences; these findings highlight the possibility of distrib-

uted modality-constrained subsystems (Conway & Christiansen,

2005). Such a view of statistical learning resonates with theories

of implicit sequence learning (Goschke, Friederici, Kotz, & van

Kampen, 2001; Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003),

implicit memory (Schacter, Chiu, & Ochsner, 1993), and tem-

poral processing (Mauk & Buonomano, 2004).

Implicit memory research, in particular, may offer insights

into the nature of statistical learning. It appears likely that both

implicit statistical learning and perceptual priming are sup-

ported by something akin to perceptual fluency (Chang &

Knowlton, 2004; Kinder, Shanks, Cock, & Tunney, 2003). That

is, networks of neurons in modality-specific brain regions show

decreased activity when processing items that are the same or

similar in overall structure—possibly because of increased

processing efficiency for that class of stimuli (P.J. Reber, Stark,

& Squire, 1998; Schacter & Badgaiyan, 2001). An explanation

of statistical learning in terms of perceptual priming or fluency is

consistent with the stimulus-specific learning we observed in

the current experiments and may offer the attractive possibility

of unifying implicit learning and implicit memory phenomena.

Although the current data point toward modality-specificity, it

is possible that learners formed both abstract and stimulus-spe-

cific representations, but that the latter were stronger and thus

were displayed more readily in the test. Another possibility is that

human cognition relies on stimulus-specific representations for

some tasks, but abstract learning for others. For example, explicit

problem-solving tasks sometimes tap participants’ use of abstract

principles (Goldstone & Sakamoto, 2003; Reeves & Weisberg,

1994). The ability to learn abstract principles and transfer them to

new domains certainly appears to be a hallmark of explicit cog-

nition; it is much less clear, especially in light of the current data,

whether it is also a hallmark of implicit learning.3

In sum, much of perception and cognition involves the use of

multiple sense modalities to implicitly extract structure from

temporal or spatiotemporal patterns. The current experiments

suggest that the knowledge underlying such implicit statistical

learning is closely tied to the sensory and perceptual features of

the material, perhaps indicating the involvement of multiple

learning subsystems, and challenging traditional theories pos-

iting abstract or amodal cognitive processes.
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